ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac structures on the space of connections

215   0   0.0 ( 0 )
 نشر من قبل Tosiaki Kori
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-manifold. The twist is described by the Cartan 3-form on the space of connections. It vanishes over the subspace of flat connections. So the spaces of flat connections are endowed with ( non-twisted ) Dirac structures. The Dirac structure on the space of flat connections over the three-manifold is obtained as the boundary restriction of a corresponding Dirac structure over the four-manifold. We discuss also the action of the group of gauge transformations over these Dirac structures.



قيم البحث

اقرأ أيضاً

222 - Tosiaki Kori 2013
Let X be a four-manifold with boundary three manifold M. We shall describe (i) a pre-symplectic structure on the space of connections of the trivial SU(n)-bundle over X that comes from the canonical symplectic structure on the cotangent bundle of the connection space, and (ii) a pre-symplectic structure on the space of flat connections of the trivial SU(n)-bundle over M that have null charge. These two structures are related by the boundary restriction map. We discuss also the Hamiltonian feature of the space of connections with the action of the group of gauge transformations.
100 - Thomas Machon 2020
Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P} (M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^Lambda$ and $d+ d^Lambda$ symplectic cohomology groups defined by Tseng and Yau.
114 - Konrad Waldorf 2016
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Mori ta equivalences between Lie groupoids. Using this notion, we define connections on principal 2-bundles as Lie 2-algebra-valued 1-forms on the total space Lie groupoid of the 2-bundle, satisfying a condition in complete analogy to connections on ordinary principal bundles. We carefully treat various notions of curvature, and prove a classification result by the non-abelian differential cohomology of Breen-Messing. This provides a consistent, global perspective to higher gauge theory.
Let (V,(.,.)) be a pseudo-Euclidean vector space and S an irreducible Cl(V)-module. An extended translation algebra is a graded Lie algebra m = m_{-2}+m_{-1} = V+S with bracket given by ([s,t],v) = b(v.s,t) for some nondegenerate so(V)-invariant refl exive bilinear form b on S. An extended Poincare structure on a manifold M is a regular distribution D of depth 2 whose Levi form L_x: D_xwedge D_xrightarrow T_xM/D_x at any point xin M is identifiable with the bracket [.,.]: Swedge Srightarrow V of a fixed extended translation algebra m. The classification of the standard maximally homogeneous manifolds with an extended Poincare structure is given, in terms of Tanaka prolongations of extended translation algebras and of appropriate gradations of real simple Lie algebras.
As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the top degree component of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible top degree component to certain composite forms, obtained by wedging with the exponential (in the exterior algebra) of the canonical 2-form on the loop space. The result is a section on the Pfaffian line bundle on the loop space. We then identify this with a section of the line bundle obtained by transgression of the spin lifting gerbe. These results are a crucial ingredient for defining the fermionic part of the supersymmetric path integral on the loop space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا