ﻻ يوجد ملخص باللغة العربية
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-manifold. The twist is described by the Cartan 3-form on the space of connections. It vanishes over the subspace of flat connections. So the spaces of flat connections are endowed with ( non-twisted ) Dirac structures. The Dirac structure on the space of flat connections over the three-manifold is obtained as the boundary restriction of a corresponding Dirac structure over the four-manifold. We discuss also the action of the group of gauge transformations over these Dirac structures.
Let X be a four-manifold with boundary three manifold M. We shall describe (i) a pre-symplectic structure on the space of connections of the trivial SU(n)-bundle over X that comes from the canonical symplectic structure on the cotangent bundle of the
Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P}
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Mori
Let (V,(.,.)) be a pseudo-Euclidean vector space and S an irreducible Cl(V)-module. An extended translation algebra is a graded Lie algebra m = m_{-2}+m_{-1} = V+S with bracket given by ([s,t],v) = b(v.s,t) for some nondegenerate so(V)-invariant refl
As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the top degree component of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign