ﻻ يوجد ملخص باللغة العربية
In this paper, we find infinite hyperbolic 3-manifolds that admit no weakly symplectically fillable contact structures, using tools in Heegaard Floer theory. We also remark that part of these manifolds do admit tight contact structures.
In this short note, we exhibit an infinite family of hyperbolic rational homology $3$--spheres which do not admit any fillable contact structures. We also note that most of these manifolds do admit tight contact structures.
We continue our study of contact structures on manifolds of dimension at least five using complex surgery theory. We show that in each dimension 2q+1 > 3 there are maximal almost contact manifolds to which there is a Stein cobordism from any other (2
In this note, we classify Stein fillings of an infinite family of contact 3-manifolds up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian 2-bridge knots. W
For some geometries including symplectic and contact structures on an n-dimensional manifold, we introduce a two-step approach to Gromovs h-principle. From formal geometric data, the first step builds a transversely geometric Haefliger structure of c
Periodic surface homemorphisms (diffeomorphisms) play a significant role in the the Nielsen-Thurston classification of surface homeomorphisms. Periodic surface homeomorphisms can be described (up to conjugacy) by using data sets which are combinatori