ترغب بنشر مسار تعليمي؟ اضغط هنا

Haefliger structures and symplectic/contact structures

199   0   0.0 ( 0 )
 نشر من قبل Francois Laudenbach
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For some geometries including symplectic and contact structures on an n-dimensional manifold, we introduce a two-step approach to Gromovs h-principle. From formal geometric data, the first step builds a transversely geometric Haefliger structure of codimension n. This step works on all manifolds, even closed. The second step, which works only on open manifolds and for all geometries, regularizes the intermediate Haefliger structure and produces a genuine geometric structure. Both steps admit relative parametri



قيم البحث

اقرأ أيضاً

Periodic surface homemorphisms (diffeomorphisms) play a significant role in the the Nielsen-Thurston classification of surface homeomorphisms. Periodic surface homeomorphisms can be described (up to conjugacy) by using data sets which are combinatori al objects. In this article, we start by associating a rational open book to a slight modification of a given data set, called marked data set. It is known that every rational open book supports a contact structure. Thus, we can associate a contact structure to a periodic map and study the properties of it in terms combinatorial conditions on marked data sets. In particular, we prove that a class of data sets, satisfying easy-to-check combinatorial hypothesis, gives rise to Stein fillable contact structures. In addition to the above, we prove an analogue of Moris construction of explicit symplectic filling for rational open books. We also prove a sufficient condition for Stein fillability of rational open books analogous to the positivity of monodromy in honest open books as in the result of Giroux and Loi-Piergallini.
263 - Youlin Li , Yajing Liu 2015
In this paper, we find infinite hyperbolic 3-manifolds that admit no weakly symplectically fillable contact structures, using tools in Heegaard Floer theory. We also remark that part of these manifolds do admit tight contact structures.
In this short note, we exhibit an infinite family of hyperbolic rational homology $3$--spheres which do not admit any fillable contact structures. We also note that most of these manifolds do admit tight contact structures.
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allow s to linearly deform certain codimension-$1$ foliations to contact structures. These results are essentially applications of the Borman-Eliashberg-Murphy h-principle for overtwisted contact structures and of the Eliashberg-Murphy symplectization of cobordisms, together with tools pertaining to foliated Morse theory, which are elaborated here.
119 - Gael Meigniez 2009
We prove the existence of a minimal (all leaves dense) foliation of codimension one, on every closed manifold of dimension at least 4 whose Euler characteristic is null, in every homotopy class of hyperplanes distributions, in every homotopy class of Haefliger structures, in every differentiability class, under the obvious embedding assumption. The proof uses only elementary means, and reproves Thurstons existence theorem in all dimensions. A parametric version is also established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا