ترغب بنشر مسار تعليمي؟ اضغط هنا

Stein fillings of contact 3-manifolds obtained as Legendrian surgeries

185   0   0.0 ( 0 )
 نشر من قبل Amey Kaloti
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we classify Stein fillings of an infinite family of contact 3-manifolds up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian 2-bridge knots. We also classify Stein fillings, up to symplectic deformation, of an infinite family of contact 3-manifolds which can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian twist knots. As a corollary, we obtain a classification of Stein fillings of an infinite family of contact hyperbolic 3-manifolds up to symplectic deformation.



قيم البحث

اقرأ أيضاً

115 - Fan Ding , Youlin Li , Zhongtao Wu 2018
In this paper, we study contact surgeries along Legendrian links in the standard contact 3-sphere. On one hand, we use algebraic methods to prove the vanishing of the contact Ozsv{a}th-Szab{o} invariant for contact $(+1)$-surgery along certain Legend rian two-component links. The main tool is a link surgery formula for Heegaard Floer homology developed by Manolescu and Ozsv{a}th. On the other hand, we use contact-geometric argument to show the overtwistedness of the contact 3-manifolds obtained by contact $(+1)$-surgeries along Legendrian two-component links whose two components are linked in some special configurations.
208 - Amey Kaloti 2013
We prove that if a contact manifold $(M,xi)$ is supported by a planar open book, then Euler characteristic and signature of any Stein filling of $(M,xi)$ is bounded. We also prove a similar finiteness result for contact manifolds supported by spinal open books with planar pages. Moving beyond the geography of Stein fillings, we classify fillings of some lens spaces.
111 - Fan Ding , Youlin Li , Zhongtao Wu 2020
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology 3-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(pm1)$-surgerie s along Legendrian links in the standard contact 3-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian two-component links in the standard contact 3-sphere to be overtwisted via their front projections.
145 - Youlin Li , Motoo Tange 2019
In this paper, we construct the first families of distinct Lagrangian ribbon disks in the standard symplectic 4-ball which have the same boundary Legendrian knots, and are not smoothly isotopic or have non-homeomorphic exteriors.
263 - Youlin Li , Yajing Liu 2015
In this paper, we find infinite hyperbolic 3-manifolds that admit no weakly symplectically fillable contact structures, using tools in Heegaard Floer theory. We also remark that part of these manifolds do admit tight contact structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا