ترغب بنشر مسار تعليمي؟ اضغط هنا

The topology of Stein fillable manifolds in high dimensions II

145   0   0.0 ( 0 )
 نشر من قبل Diarmuid Crowley
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our study of contact structures on manifolds of dimension at least five using complex surgery theory. We show that in each dimension 2q+1 > 3 there are maximal almost contact manifolds to which there is a Stein cobordism from any other (2q+1)-dimensional contact manifold. We show that the product M x S^2 admits a weakly fillable contact structure provided M admits a weak symplectic filling. We also study the connection between Stein fillability and connected sums: we give examples of almost contact manifolds for which the connected sum is Stein fillable, while the components are not. Concerning obstructions to Stein fillings, we show that the (8k-1)-dimensional sphere has an almost contact structure which is not Stein fillable once k > 1. As a consequence we deduce that any highly connected almost contact (8k-1)-manifold (with k > 1) admits an almost contact structure which is not Stein fillable. The proofs rely on a new number-theoretic result about Bernoulli numbers.



قيم البحث

اقرأ أيضاً

263 - Youlin Li , Yajing Liu 2015
In this paper, we find infinite hyperbolic 3-manifolds that admit no weakly symplectically fillable contact structures, using tools in Heegaard Floer theory. We also remark that part of these manifolds do admit tight contact structures.
191 - Amey Kaloti , Youlin Li 2013
In this note, we classify Stein fillings of an infinite family of contact 3-manifolds up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian 2-bridge knots. W e also classify Stein fillings, up to symplectic deformation, of an infinite family of contact 3-manifolds which can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian twist knots. As a corollary, we obtain a classification of Stein fillings of an infinite family of contact hyperbolic 3-manifolds up to symplectic deformation.
In this short note, we exhibit an infinite family of hyperbolic rational homology $3$--spheres which do not admit any fillable contact structures. We also note that most of these manifolds do admit tight contact structures.
216 - Amey Kaloti 2013
We prove that if a contact manifold $(M,xi)$ is supported by a planar open book, then Euler characteristic and signature of any Stein filling of $(M,xi)$ is bounded. We also prove a similar finiteness result for contact manifolds supported by spinal open books with planar pages. Moving beyond the geography of Stein fillings, we classify fillings of some lens spaces.
73 - Igor Nikolaev 2019
We construct a functor from the smooth 4-dimensional manifolds to the hyper-algebraic number fields, i.e. fields with non-commutative multiplication. It is proved that that the simply connected 4-manifolds correspond to the abelian extensions. We rec over the Rokhlin and Donaldsons Theorems from the Galois theory of the non-commutative fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا