ترغب بنشر مسار تعليمي؟ اضغط هنا

Inequivalent Vacuum States in Algebraic Quantum Theory

66   0   0.0 ( 0 )
 نشر من قبل Gennady Sardanashvily
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Sardanashvily




اسأل ChatGPT حول البحث

The GNS representation construction is considered in a general case of topological involutive algebras of quantum systems, including quantum fields, and inequivalent state spaces of these systems are characterized. We aim to show that, from the physical viewpoint, they can be treated as classical fields by analogy with a Higgs vacuum field.



قيم البحث

اقرأ أيضاً

We give rigorous proofs for the existence of infinitely many (non-BPS) bound states for two linear operators associated with the Yang-Mills-Higgs equations at vanishing Higgs self-coupling and for gauge group SU(2): the operator obtained by linearisi ng the Yang-Mills-Higgs equations around a charge one monopole and the Laplace operator on the Atiyah-Hitchin moduli space of centred charge two monopoles. For the linearised system we use the Riesz-Galerkin approximation to compute upper bounds on the lowest 20 eigenvalues. We discuss the similarities in the spectrum of the linearised system and the Laplace operator, and interpret them in the light of electric-magnetic duality conjectures.
A novel C*-algebraic framework is presented for relativistic quantum field theories, fixed by a Lagrangean. It combines the postulates of local quantum physics, encoded in the Haag-Kastler axioms, with insights gained in the perturbative approach to quantum field theory. Key ingredients are an appropriate version of Bogolubovs relative $S$-operators and a reformulation of the Schwinger-Dyson equations. These are used to define for any classical relativistic Lagrangean of a scalar field a non-trivial local net of C*-algebras, encoding the resulting interactions at the quantum level. The construction works in any number of space-time dimensions. It reduces the longstanding existence problem of interacting quantum field theories in physical spacetimeto the question of whether the C*-algebras so constructed admit suitable states, such as stable ground and equilibrium states. The method is illustrated on the example of a non-interacting field and it is shown how to pass from it within the algebra to interacting theories by relying on a rigorous local version of the interaction picture.
219 - Paolo Bertozzini 2014
We provide an algebraic formulation of C.Rovellis relational quantum theory that is based on suitable notions of non-commutative higher operator categories, originally developed in the study of categorical non-commutative geometry. As a way to implem ent C.Rovellis original intuition on the relational origin of space-time, in the context of our proposed algebraic approach to quantum gravity via Tomita-Takesaki modular theory, we tentatively suggest to use this categorical formalism in order to spectrally reconstruct non-commutative relational space-time geometries from categories of correlation bimodules between operator algebras of observables. Parts of this work are joint collaborations with: Dr.Roberto Conti (Sapienza Universita di Roma), Assoc.Prof.Wicharn Lewkeeratiyutkul (Chulalongkorn University, Bangkok), Dr.Rachel Dawe Martins (Istituto Superior Tecnico, Lisboa), Dr.Matti Raasakka (Paris 13 University), Dr.Noppakhun Suthichitranont.
Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge invariant) vect or potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line $Re(s)=1/2$. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Following this approach, we discuss a necessary condition that such a sequence of numbers should obey in order to be associated with the spectrum of a linear differential operator of a system with countably infinite number of degrees of freedom described by quantum field theory. The sequence of nontrivial zeros is zeta regularizable. Then, functional integrals associated with hypothetical systems described by self-adjoint operators whose spectra is given by this sequence can be constructed. However, if one considers the same situation with primes numbers, the associated functional integral cannot be constructed, due to the fact that the sequence of prime numbers is not zeta regularizable. Finally, we extend this result to sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا