ترغب بنشر مسار تعليمي؟ اضغط هنا

A C*-algebraic approach to interacting quantum field theories

67   0   0.0 ( 0 )
 نشر من قبل Detlev Buchholz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel C*-algebraic framework is presented for relativistic quantum field theories, fixed by a Lagrangean. It combines the postulates of local quantum physics, encoded in the Haag-Kastler axioms, with insights gained in the perturbative approach to quantum field theory. Key ingredients are an appropriate version of Bogolubovs relative $S$-operators and a reformulation of the Schwinger-Dyson equations. These are used to define for any classical relativistic Lagrangean of a scalar field a non-trivial local net of C*-algebras, encoding the resulting interactions at the quantum level. The construction works in any number of space-time dimensions. It reduces the longstanding existence problem of interacting quantum field theories in physical spacetimeto the question of whether the C*-algebras so constructed admit suitable states, such as stable ground and equilibrium states. The method is illustrated on the example of a non-interacting field and it is shown how to pass from it within the algebra to interacting theories by relying on a rigorous local version of the interaction picture.



قيم البحث

اقرأ أيضاً

100 - Giuseppe Ruzzi 2004
We investigate a new property of nets of local algebras over 4-dimensional globally hyperbolic spacetimes, called punctured Haag duality. This property consists in the usual Haag duality for the restriction of the net to the causal complement of a po int $p$ of the spacetime. Punctured Haag duality implies Haag duality and local definiteness. Our main result is that, if the theory is locally covariant in the sense of Brunetti, Fredenhagen and Verch, then also the converse holds. The free Klein-Gordon field provides an example in which this property is verified.
113 - V. Caudrelier , A. Kundu 2014
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate. The Poisson bracket corresponding to the time coordinate is the usual one describing the time evolution of the system. Taking the nonlinear Schrodinger (NLS) equation as an example, we introduce the new bracket associated to the space coordinate. We show that, in the absence of any defect, the two brackets yield completely equivalent Hamiltonian descriptions of the model. However, in the presence of a defect described by a frozen Backlund transformation, the advantage of using the new bracket becomes evident. It allows us to reinterpret the defect conditions as canonical transformations. As a consequence, we are also able to implement the method of the classical r matrix and to prove Liouville integrability of the system with such a defect. The use of the new Poisson bracket completely bypasses all the known problems associated with the presence of a defect in the discussion of Liouville integrability. A by-product of the approach is the reinterpretation of the defect Lagrangian used in the Lagrangian description of integrable defects as the generating function of the canonical transformation representing the defect conditions.
126 - G. Niccoli 2013
We present a microscopic approach in the framework of Sklyanins quantum separation of variables (SOV) for the exact solution of 1+1-dimensional quantum field theories by integrable lattice regularizations. Sklyanins SOV is the natural quantum analogu e of the classical method of separation of variables and it allows a more symmetric description of classical and quantum integrability w.r.t. traditional Bethe ansatz methods. Moreover, it has the advantage to be applicable to a more general class of models for which its implementation gives a characterization of the spectrum complete by construction. Our aim is to introduce a method in this framework which allows at once to derive the spectrum (eigenvalues and eigenvectors) and the dynamics (time dependent correlation functions) of integrable quantum field theories (IQFTs). This approach is presented for a paradigmatic example of relativistic IQFT, the sine-Gordon model.
65 - G. Sardanashvily 2015
The GNS representation construction is considered in a general case of topological involutive algebras of quantum systems, including quantum fields, and inequivalent state spaces of these systems are characterized. We aim to show that, from the physi cal viewpoint, they can be treated as classical fields by analogy with a Higgs vacuum field.
In generic conformal field theories with $W_3$ symmetry, we identify a primary field $sigma$ with rational Kac indices, which produces the full $mathbb{Z}_3$ charged and neutral sectors by the fusion processes $sigma times sigma$ and $sigma times sig ma^*$, respectively. In this sense, this field generalises the $mathbb{Z}_3$ fundamental spin field of the three-state Potts model. Among the degenerate fields produced by these fusions, we single out a `parafermion field $psi$ and an `energy field $varepsilon$. In analogy with the Virasoro case, the exact curves for conformal dimensions $(h_sigma,h_psi)$ and $(h_sigma,h_varepsilon)$ are expected to give close estimates for the unitarity bounds in the conformal bootstrap analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا