ترغب بنشر مسار تعليمي؟ اضغط هنا

Categorical Operator Algebraic Foundations of Relational Quantum Theory

164   0   0.0 ( 0 )
 نشر من قبل Paolo Bertozzini -
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paolo Bertozzini




اسأل ChatGPT حول البحث

We provide an algebraic formulation of C.Rovellis relational quantum theory that is based on suitable notions of non-commutative higher operator categories, originally developed in the study of categorical non-commutative geometry. As a way to implement C.Rovellis original intuition on the relational origin of space-time, in the context of our proposed algebraic approach to quantum gravity via Tomita-Takesaki modular theory, we tentatively suggest to use this categorical formalism in order to spectrally reconstruct non-commutative relational space-time geometries from categories of correlation bimodules between operator algebras of observables. Parts of this work are joint collaborations with: Dr.Roberto Conti (Sapienza Universita di Roma), Assoc.Prof.Wicharn Lewkeeratiyutkul (Chulalongkorn University, Bangkok), Dr.Rachel Dawe Martins (Istituto Superior Tecnico, Lisboa), Dr.Matti Raasakka (Paris 13 University), Dr.Noppakhun Suthichitranont.

قيم البحث

اقرأ أيضاً

77 - Nicolas Michel 2011
Recall that the definition of the $K$-theory of an object C (e.g., a ring or a space) has the following pattern. One first associates to the object C a category A_C that has a suitable structure (exact, Waldhausen, symmetric monoidal, ...). One then applies to the category A_C a $K$-theory machine, which provides an infinite loop space that is the $K$-theory K(C) of the object C. We study the first step of this process. What are the kinds of objects to be studied via $K$-theory? Given these types of objects, what structured categories should one associate to an object to obtain $K$-theoretic information about it? And how should the morphisms of these objects interact with this correspondence? We propose a unified, conceptual framework for a number of important examples of objects studied in $K$-theory. The structured categories associated to an object C are typically categories of modules in a monoidal (op-)fibred category. The modules considered are locally trivial with respect to a given class of trivial modules and a given Grothendieck topology on the object Cs category.
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohrs idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scotts interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).
65 - G. Sardanashvily 2015
The GNS representation construction is considered in a general case of topological involutive algebras of quantum systems, including quantum fields, and inequivalent state spaces of these systems are characterized. We aim to show that, from the physi cal viewpoint, they can be treated as classical fields by analogy with a Higgs vacuum field.
218 - Samuel Mimram 2013
When working with distant collaborators on the same documents, one often uses a version control system, which is a program tracking the history of files and helping importing modifications brought by others as patches. The implementation of such a sy stem requires to handle lots of situations depending on the operations performed by users on files, and it is thus difficult to ensure that all the corner cases have been correctly addressed. Here, instead of verifying the implementation of such a system, we adopt a complementary approach: we introduce a theoretical model, which is defined abstractly by the universal property that it should satisfy, and work out a concrete description of it. We begin by defining a category of files and patches, where the operation of merging the effect of two coinitial patches is defined by pushout. Since two patches can be incompatible, such a pushout does not necessarily exist in the category, which raises the question of which is the correct category to represent and manipulate files in conflicting state. We provide an answer by investigating the free completion of the category of files under finite colimits, and give an explicit description of this category: its objects are finite sets labeled by lines equipped with a transitive relation and morphisms are partial functions respecting labeling and relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا