ﻻ يوجد ملخص باللغة العربية
In high orbital angular momentum ($ell geq 3$) Rydberg states, the centrifugal barrier hinders close approach of the Rydberg electron to the ion-core. As a result, these core-nonpenetrating Rydberg states can be well described by a simplified model in which the Rydberg electron is only weakly perturbed by the long-range electric properties (i.e., multipole moments and polarizabilities) of the ion-core. We have used a long-range model to describe the vibrational autoionization dynamics of high-$ell$ Rydberg states of nitric oxide (NO). In particular, our model explains the extensive angular momentum exchange between the ion-core and Rydberg electron that had been previously observed in vibrational autoionization of $f$ ($ell=3$) Rydberg states. These results shed light on a long-standing mechanistic question around these previous observations, and support a direct, vibrational mechanism of autoionization over an indirect, predissociation-mediated mechanism. In addition, our model correctly predicts newly measured total decay rates of $g$ ($ell=4$) Rydberg states because, for $ellgeq4$, the non-radiative decay is dominated by autoionization rather than predissociation. We examine the predicted NO$^+$ ion rotational state distributions generated by vibrational autoionization of $g$ states and discuss applications of our model to achieve quantum state selection in the production of molecular ions.
We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis o
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li
The theory is developed for one and two atom interactions when the atom has a Rydberg electron attached to a hyperfine split core state. This situation is relevant for some of the rare earth and alkaline earth atoms that have been proposed for experi
The lifetimes of the lower-lying vibrational states of ultralong-range strontium Rydberg molecules comprising one ground-state 5s2 1S0 atom and one Rydberg atom in the 5s38s 3S1 state are reported. The molecules are created in an ultracold gas held i