ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide

386   0   0.0 ( 0 )
 نشر من قبل Stefan Filipp
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state co-planar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38 GHz, have been studied for states with principal quantum numbers in the range 30 - 35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined.

قيم البحث

اقرأ أيضاً

We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of t he EIT resonance. This splitting can be employed to vary the group index by $pm 10^5$ allowing independent control of the propagation of dark state polaritons. We also demonstrate that microwave dressing leads to enhanced interaction effects. In particular, we present evidence for a $1/R^3$ energy shift between Rydberg states resonantly coupled by the microwave field and the ensuing breakdown of the pair-wise interaction approximation.
We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis o f the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the Auger decay rates. If the electron clouds overlap by more than one percent, the Auger decay rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.
Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approximation. Quantum defects, obtained by fitting existing laser sp ectroscopic data, are provided for all $S$, $P$, $D$ and $F$ series of strontium and for the $^3P_2$ series of calcium. The results show qualitative differences with the alkali metal atoms, including isotropically attractive interactions of the strontium $^1S_0$ states and a greater rarity of Forster resonances. Only two such resonances are identified, both in triplet series of strontium. The angular dependence of the long range interaction is briefly discussed.
We have directly detected millimeter wave (mm-wave) free space superradiant emission from Rydberg states ($n sim 30$) of barium atoms in a single shot. We trigger the cooperative effects with a weak initial pulse and detect with single-shot sensitivi ty and 20 ps time resolution, which allows measurement and shot-by-shot analysis of the distribution of decay rates, time delays, and time-dependent frequency shifts. Cooperative line shifts and decay rates are observed that exceed values that would correspond to the Doppler width of 250 kHz by a factor of 20 and the spontaneous emission rate of 50 Hz by a factor of $10^5$. The initial superradiant output pulse is followed by evolution of the radiation-coupled many-body system toward complex long-lasting emission modes. A comparison to a mean-field theory is presented which reproduces the quantitative time-domain results, but fails to account for either the frequency-domain observations or the long-lived features.
We predict that ultralong-range Rydberg bi-molecules form in collisions between polar molecules in cold and ultracold settings. The collision of $Lambda$-doublet nitric oxide (NO) with long-lived Rydberg NO($nf$, $ng$) molecules forms ultralong-range Rydberg bi-molecules with GHz energies and kilo-Debye permanent electric dipole moments. The Hamiltonian includes both the anisotropic charge-molecular dipole interaction and the electron-NO scattering. The rotational constant for the Rydberg bi-molecules is in the MHz range, allowing for microwave spectroscopy of rotational transitions in Rydberg bi-molecules. Considerable orientation of NO dipole can be achieved. The Rydberg molecules described here hold promise for studies of a special class of long-range bi-molecular interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا