ترغب بنشر مسار تعليمي؟ اضغط هنا

Nodeless superconductivity in the infinite-layer electron-doped Sr_0.9La_0.1CuO_2 cuprate superconductor

455   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on measurements of the in-plane magnetic penetration depth lambda_{ab} in the infinite-layer electron-doped high-temperature cuprate superconductor Sr_0.9La_0.1CuO_2 by means of muon-spin rotation. The observed temperature and magnetic field dependences of lambda_{ab} are consistent with the presence of a substantial s-wave component in the superconducting order parameter in good agreement with the results of tunneling, specific heat, and small-angle neutron scattering experiments.



قيم البحث

اقرأ أيضاً

The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two know n families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.
Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. U nconventional superconductivity is predicted in single layer graphene where the electrons pair with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing single layer graphene on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in single layer graphene. The realization of unconventional superconductivity in single layer graphene offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.
Electron-doped and hole-doped superconducting cuprates exhibit a symmetric phase diagram as a function of doping. This symmetry is however only approximate. Indeed, electron-doped cuprates become superconductors only after a specific annealing proces s: This annealing affects the oxygen content only by a tiny amount, but has a dramatic impact on the electronic properties of the sample. Here, we report the occurrence of superconductivity in oxygen-deficient Nd$_{2-x}$Ce$_x$CuO$_4$ thin films grown in oxygen-free environment, after annealing in pure argon flow. As verified by x-ray diffraction, annealing induces an increase of the interlayer distance between CuO$_2$ planes in the crystal structure. Since this distance is correlated to the concentration of oxygens in apical positions, and since oxygen content cannot substantially increase during annealing, our experiments indicate that the superconducting phase transition has to be ascribed to a migration of oxygen ions to apical positions during annealing. Moreover, as we confirm via first-principles density functional theory calculations, the changes in the structural and transport properties of the films can be theoretically described by a specific redistribution of the existing oxygens ions at apical positions with respect to CuO$_2$ planes, which remodulates the electronic band structure and suppresses the antiferromagnetic order, allowing the emergence of hole superconductivity.
The recent discovery of the superconductivity in the doped infinite layer nickelates $R$NiO$_2$ ($R$=La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca,Sr)CuO$_2$ having superconducting transition temperature ($T_{rm c}$) of about 110 K. Verifying the commonalities and differences between these oxides will certainly give a new insight into the mechanism of high $T_{rm c}$ superconductivity in correlated electron systems. In this paper, we review experimental and theoretical works on this new superconductor and discuss the future perspectives for the nickel age of superconductivity.
We report on the effect of substitution for Cu on Tc of electron-doped infinite-layer superconductors Sr0.9La0.1Cu1-xRxO2, R = Zn and Ni. We found that Tc was nearly constant until x = 0.03 for R = Zn, while superconductivity was nearly suppressed fo r x = 0.02 with dTc/dx = 20 K/% for R = Ni. This behavior is very similar to that of conventional superconductors. These findings are discussed in terms of the superconducting gap symmetry in the cuprate superconductors including another electron-doped superconductor, (Nd,Ce)2CuO4-y.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا