ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of $beta$-decay rates to the radial dependence of the nucleon effective mass

39   0   0.0 ( 0 )
 نشر من قبل Jerome Margueron
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the sensitivity of $beta$-decay rates in 78 Ni and 100,132 Sn to a correction term in Skyrme energy-density functionals (EDF) which modifies the radial shape of the nucleon effective mass. This correction is added on top of several Skyrme parametrizations which are selected from their effective mass properties and predictions about the stability properties of 132 Sn. The impact of the correction on high-energy collective modes is shown to be moderate. From the comparison of the effects induced by the surface-peaked effective mass in the three doubly magic nuclei, it is found that 132 Sn is largely impacted by the correction, while 78 Ni and 100 Sn are only moderately affected. We conclude that $beta$-decay rates in these nuclei can be used as a test of different parts of the nuclear EDF: 78 Ni and 100 Sn are mostly sensitive to the particle-hole interaction through the B(GT) values, while 132 Sn is sensitive to the radial shape of the effective mass. Possible improvements of these different parts could therefore be better constrained in the future.

قيم البحث

اقرأ أيضاً

66 - Zhong-yu Ma 2004
The isospin dependence of the nucleon effective mass is investigated in the framework of the Dirac Brueckner-Hartree-Fock (DBHF) approach. The definition of nucleon scalar and vector effective masses in the relativistic approach is clarified. Only th e vector effective mass is the quantity related to the empirical value extracted from the analysis in the nonrelatiistic shell and optical potentials. In the relativistic mean field theory, where the nucleon scalar and vector potentials are both energy independent, the neutron vector potential is stronger than that of proton in the neutron rich nuclear matter, which produces a smaller neutron vector effective mass than that of proton. It is pointed out that the energy dependence of nucleon potentials has to be considered in the analysis of the isospin dependence of the nucleon effective mass. In the DBHF the neutron vector effective mass is larger than that of proton once the energy dependence of nucleon potentials is considered. The results are consistent with the analysis of phenomenological isospin dependent optical potentials.
Within the nuclear shell model, we investigate the correction $delta_{RO}$ to the Fermi matrix element due to a mismatch between proton and neutron single-particle radial wave functions. Eight superallowed $0^+ to 0^+$ $beta$ decays in the $sd$-shell , comprised of $^{22}$Mg, $^{26m}$Al, $^{26}$Si, $^{30}$S, $^{34}$Cl, $^{34}$Ar, $^{38m}$K and $^{38}$Ca are re-examined. The radial wave functions are obtained from a spherical Woods-Saxon potential whose parametrizations are optimized in a consistent adjustment of the depth and the length parameter to relevant experimental observables, such as nucleon separation energies and charge radii, respectively. The chosen fit strategy eliminates the strong dependence of the radial mismatch correction to a specific parametrization, except for calculations with an additional surface-peaked term. As an improvement, our model proposes a new way to calculate the charge radii, based on a parentage expansion which accounts for correlations beyond the extreme independent-particle model. Apart from the calculations with a surface-peak term and the cases where we used a different model space, the new sets of $delta_{RO}$ are in general agreement with the earlier result of Towner and Hardy [1]. Small differences of the corrected average $overline{mathcal{F}t}$ value are observed.
We report quantum Monte Carlo calculations of single-$Lambda$ hypernuclei for $A<50$ based on phenomenological two- and three-body hyperon-nucleon forces. We present results for the $Lambda$ separation energy in different hyperon orbits, showing that the accuracy of theoretical predictions exceeds that of currently available experimental data, especially for medium-mass hypernuclei. We show the results of a sensitivity study that indicates the possibility to investigate the nucleon-isospin dependence of the three-body hyperon-nucleon-nucleon force in the medium-mass region of the hypernuclear chart, where new spectroscopy studies are currently planned. The importance of such a dependence for the description of the physics of hypernuclei, and the consequences for the prediction of neutron star properties are discussed.
The effects of the phonon-phonon coupling on the beta-decay rates of neutron-rich nuclei are studied in a microscopic model based on Skyrme-type interactions. The approach uses a finite-rank separable approximation of the Skyrme-type particle-hole (p -h) residual interaction. Very large two-quasiparticle spaces can thus be treated. A redistribution of the Gamow-Teller (G-T) strength is found due to the tensor correlations and the 2p-2h fragmentation of G-T states. As a result, the beta-decay half-lives are decreased significantly. Using the Skyrme interaction SGII together with a volume-type pairing interaction we illustrate this reduction effect by comparing with available experimental data for the Ni isotopes and neutron-rich N=50 isotones. We give predictions for 76Fe and 80Ni in comparison with the case of the doubly-magic nucleus 78Ni which is an important waiting point in the r-process.
129 - V.I. Isakov 2018
In the framework of the two-group configuration model we obtain formulas for the reduced transition rates for beta- and gamma-transitions in even-even, odd-odd, even-odd, and odd-even nuclei. We explored dependencies of the transition rates on the oc cupancies of the involved subshells, as well as on the spin values of the initial and final states. The obtained formulas are useful for the qualitative spectroscopic analysis of experimental data, particulary in the regions of magicity, including the regions of the remote nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا