ترغب بنشر مسار تعليمي؟ اضغط هنا

Medium-mass hypernuclei and the nucleon-isospin dependence of the three-body hyperon-nucleon-nucleon force

131   0   0.0 ( 0 )
 نشر من قبل Diego Lonardoni
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report quantum Monte Carlo calculations of single-$Lambda$ hypernuclei for $A<50$ based on phenomenological two- and three-body hyperon-nucleon forces. We present results for the $Lambda$ separation energy in different hyperon orbits, showing that the accuracy of theoretical predictions exceeds that of currently available experimental data, especially for medium-mass hypernuclei. We show the results of a sensitivity study that indicates the possibility to investigate the nucleon-isospin dependence of the three-body hyperon-nucleon-nucleon force in the medium-mass region of the hypernuclear chart, where new spectroscopy studies are currently planned. The importance of such a dependence for the description of the physics of hypernuclei, and the consequences for the prediction of neutron star properties are discussed.



قيم البحث

اقرأ أيضاً

143 - H. Nemura , N. Ishii , S. Aoki 2009
We calculate potentials between a proton and a $Xi^0$ (hyperon with strangeness -2) through the equal-time Bethe-Salpeter wave function, employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm )^4 lattice at the lattice spacing $a simeq 0.14$ fm. The ud quark mass in our study corresponds to $m_{pi}simeq 0.37$ and 0.51 GeV, while the s quark mass corresponds to the physical value of $m_K$. The central $p Xi^0$ potential has a strong (weak) repulsive core in the $^1S_0$ ($^3S_1$) channel for $r lsim 0.6$ fm, while the potential has attractive well at the medium and long distances (0.6 fm $lsim r lsim 1.2$ fm) in both channels. The sign of the $p Xi^0$ scattering length and its quark mass dependence indicate a net attraction in both channels at low energies.
We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the bare chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.
110 - Y. Fujiwara 2004
Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto- Niigata group are applied to the hypertriton calculation in a new three-cluster Faddeev formalism using the two-cluster resonating-group method kernels. The most recent model, fss2, gives a reasonable result similar to the Nijmegen soft-core model NSC89, except for an appreciable contributions of higher partial waves.
96 - Y. Fujiwara 2001
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o rder term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry breaking and the Coulomb effect are properly incorporated in the particle basis. The essential feature of the Lambda N - Sigma N coupling is qualitatively similar to that obtained from the previous models. The nuclear saturation properties and the single-particle potentials of the nucleon, Lambda and Sigma are reexamined through the G-matrix calculation. The single-particle potential of the Sigma hyperon is weakly repulsive in symmetric nuclear matter. The single-particle spin-orbit strength for the Lambda particle is very small, in comparison with that of the nucleons, due to the strong antisymmetric spin-orbit force generated from the Fermi-Breit interaction.
The structure of single-$Lambda$ hypernuclei is studied using the chiral hyperon-nucleon potentials derived at leading order (LO) and next-to-leading order (NLO) by the J{u}lich--Bonn--Munich group. Results for the separation energies of $Lambda$ sin gle-particle states for various hypernuclei from $^5_{Lambda}$He to $^{209}_{,,,,,Lambda}$Pb are presented for the LO interaction and the 2013 (NLO13) and 2019 (NLO1
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا