ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial Overlap Correction to Superallowed $0^+ to 0^+$ $beta $-decay revisited

150   0   0.0 ( 0 )
 نشر من قبل Latsamy Xayavong
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the nuclear shell model, we investigate the correction $delta_{RO}$ to the Fermi matrix element due to a mismatch between proton and neutron single-particle radial wave functions. Eight superallowed $0^+ to 0^+$ $beta$ decays in the $sd$-shell, comprised of $^{22}$Mg, $^{26m}$Al, $^{26}$Si, $^{30}$S, $^{34}$Cl, $^{34}$Ar, $^{38m}$K and $^{38}$Ca are re-examined. The radial wave functions are obtained from a spherical Woods-Saxon potential whose parametrizations are optimized in a consistent adjustment of the depth and the length parameter to relevant experimental observables, such as nucleon separation energies and charge radii, respectively. The chosen fit strategy eliminates the strong dependence of the radial mismatch correction to a specific parametrization, except for calculations with an additional surface-peaked term. As an improvement, our model proposes a new way to calculate the charge radii, based on a parentage expansion which accounts for correlations beyond the extreme independent-particle model. Apart from the calculations with a surface-peak term and the cases where we used a different model space, the new sets of $delta_{RO}$ are in general agreement with the earlier result of Towner and Hardy [1]. Small differences of the corrected average $overline{mathcal{F}t}$ value are observed.

قيم البحث

اقرأ أيضاً

We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have be en re-examined. The Fermi matrix element is evaluated with realistic spherical single-particle wave functions, obtained from spherical Woods-Saxon (WS) or Hartree-Fock (HF) potentials, fine-tuned to reproduce the experimental data on charge radii and separation energies for nuclei of interest. The elaborated adjustment procedure removes any sensitivity of the correction to a specific parametrisation of the WS potential or to vario
textbf{Background}: Superallowed $0^+ rightarrow 0^+$ $beta$ decays of isospin $T=2$ nuclides can be used to test theoretical isospin symmetry breaking corrections applied to extract the CKM matrix element $V_{ud}$ from $T = 0,1$ decays by measuring precise $ft$ values and also to search for scalar currents using the $beta- u$ angular correlation. Key ingredients include the $Q_{textrm{EC}}$ value and branching of the superallowed transition and the half life of the parent. textbf{Purpose}: To determine a precise experimental $Q_{textrm{EC}}$ value for the superallowed $0^+ rightarrow 0^+$ $beta$ decay of $T=2$ $^{20}$Mg and the intensity of $^{20}$Mg $beta$-delayed $gamma$ rays through the isobaric analog state in $^{20}$Na. textbf{Method}: A beam of $^{20}$Mg was produced using the in-flight method and implanted into a plastic scintillator surrounded by an array of high-purity germanium detectors used to detect $beta$-delayed $gamma$ rays. The high-resolution $gamma$-ray spectrum was analyzed to measure the $gamma$-ray energies and intensities. textbf{Results}: The intensity of $^{20}$Mg $beta$-delayed $gamma$ rays through the isobaric analog state in $^{20}$Na was measured to be $(1.60 pm 0.04_{textrm{stat}} pm 0.15_{textrm{syst}} pm 0.15_{textrm{theo}}) times 10^{-4}$, where the uncertainties are statistical, systematic, and theoretical, respectively. The $Q_{textrm{EC}}$ value for the superallowed transition was determined to be $4128.7 pm 2.2$ keV based on the measured excitation energy of $6498.4 pm 0.2_{textrm{stat}} pm 0.4_{textrm{syst}}$ keV and literature values for the ground-state masses of $^{20}$Na and $^{20}$Mg. textbf{Conclusions}: The $beta$-delayed $gamma$-decay branch and $Q_{textrm{EC}}$ value are now sufficiently precise to match or exceed the sensitivity required for current low-energy tests of the standard model.
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismat ch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
A $^{52}$Cr$(p,t)$$^{50}$Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in $^{50}$Cr were observed up to an excitation energy of 5.3 MeV. Despit e significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited $0^+$ state was found. As a result, the $0^+_2$ state is reassigned at an excitation energy of $E_x=3895.0(5)$ keV in $^{50}$Cr. This reassignment directly impacts direct searches for a non-analogue Fermi $beta^+$ decay branch in $^{50}$Mn. These results also show better systematic agreement with the theoretical predictions for the $0^+$ state spectrum in $^{50}$Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to $ab$-$initio$ shell-model predictions using the IM-SRG formalism based on $NN$ and $3N$ forces from chiral-EFT in the $pf$-shell for the first time.
136 - I. S. Towner 2002
The measured $ft$-values for superallowed $0^{+} to 0^{+}$ nuclear $beta$-decay can be used to obtain the value of the vector coupling constant and thus to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. An essential requirement for this test is accurate calculations for the radiative and isospin symmetry-breaking corrections that must be applied to the experimental data. We present a new and consistent set of calculations for the nuclear-structure-dependent components of these corrections. These new results do not alter the current status of the unitarity test -- it still fails by more than two standard deviations -- but they provide calculated corrections for eleven new superallowed transitions that are likely to become accessible to precise measurements in the future. The reliability of all calculated corrections is explored and an experimental method indicated by which the structure-dependent corrections can be tested and, if necessary, improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا