ﻻ يوجد ملخص باللغة العربية
The effects of the phonon-phonon coupling on the beta-decay rates of neutron-rich nuclei are studied in a microscopic model based on Skyrme-type interactions. The approach uses a finite-rank separable approximation of the Skyrme-type particle-hole (p-h) residual interaction. Very large two-quasiparticle spaces can thus be treated. A redistribution of the Gamow-Teller (G-T) strength is found due to the tensor correlations and the 2p-2h fragmentation of G-T states. As a result, the beta-decay half-lives are decreased significantly. Using the Skyrme interaction SGII together with a volume-type pairing interaction we illustrate this reduction effect by comparing with available experimental data for the Ni isotopes and neutron-rich N=50 isotones. We give predictions for 76Fe and 80Ni in comparison with the case of the doubly-magic nucleus 78Ni which is an important waiting point in the r-process.
The low-lying structure of semi-magic $^{118}$Sn has been investigated through the $beta$-decay of $^{118}$In ($T_{1/2}=4.45$ min) to study shape coexistence via the reduced transition probabilities of states in the 2p-2h proton intruder band. This h
We analyze the density dependence of the contribution of meson-exchange currents to the lepton-nucleus inclusive cross section in the two-particle two-hole channel. The model is based on the Relativistic Fermi Gas, where each nucleus is characterized
Following recent studies of inclusive electron scattering from nuclei at high energies which focused on two-nucleon emission mediated by meson-exchange currents, in this work the superscaling behavior of such contributions is investigated. Comparison
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak
The contribution to the nuclear transverse response function R_T arising from two particle-two hole (2p-2h) states excited through the action of electromagnetic meson exchange currents (MEC) is computed in a fully relativistic framework. The MEC cons