ﻻ يوجد ملخص باللغة العربية
By means of ab initio calculations we study the effect of O-doping of Au chains containing a nanocontact represented by a Ni atom as a magnetic impurity. In contrast to pure Au chains, we find that with a minimun O-doping the $5d_{xz,yz}$ states of Au are pushed up, crossing the Fermi level. We also find that for certain O configurations, the Ni atom has two holes in the degenerate $3d_{xz,yz}$ orbitals, forming a spin $S=1$ due to a large Hund interaction. The coupling between the $5d_{xz,yz}$ Au bands and the $3d_{xz,yz}$ of Ni states leads to a possible realization of a two-channel $S=1$ Kondo effect. While this kind of Kondo effect is commonly found in bulk systems, it is rarely observed in low dimensions. The estimated Kondo scale of the system lies within the present achievable experimental resolution in transport measurements. Another possible scenario for certain atomic configurations is that one of the holes resides in a $3d_{z^2}$ orbital, leading to a two-stage Kondo effect, the second one with SU(4) symmetry.
We analyze the conduction bands of the one dimensional noble-metal chains that contain a Co magnetic impurity by means of ab initio calculations. We compare the results obtained for Cu and Ag pure chains, as well as O doped Cu, Ag and Au chains with
We show that a self-assembled phase of potassium (K) doped single-layer para-sexiphenyl (PSP) film on gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we find a Ko
We present a study of terahertz frequency magnetoelectric effect in ferrimagnetic pyroelectric CaBaCo$_4$O$_7$ and its Ni-doped variants. The terahertz absorption spectrum of these materials consists of spin excitations and low-frequency infrared-act
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are ind
Motivated by recent STM experiments, we explore the magnetic field induced Kondo effect that takes place at symmetry protected level crossings in finite Co adatom chains. We argue that the effective two-level system realized at a level crossing acts