ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual Kondo physics in a Co impurity atom embedded in noble-metal chains

249   0   0.0 ( 0 )
 نشر من قبل Solange Di Napoli Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the conduction bands of the one dimensional noble-metal chains that contain a Co magnetic impurity by means of ab initio calculations. We compare the results obtained for Cu and Ag pure chains, as well as O doped Cu, Ag and Au chains with those previously found for Au pure chains. We find similar results in the case of Cu and Au hosts, whereas for Ag chains a different behavior is obtained. Differences and similarities among the different systems are analyzed by comparing the electronic structure of the three noble-metal hosts. The d-orbitals of Cu chains at the Fermi level have the same symmetry as in the case of Au chains. These orbitals hybridize with the corresponding ones of the Co impurity, giving rise to the possibility of exhibiting a two-channel Kondo physics.



قيم البحث

اقرأ أيضاً

By means of ab initio calculations we study the effect of O-doping of Au chains containing a nanocontact represented by a Ni atom as a magnetic impurity. In contrast to pure Au chains, we find that with a minimun O-doping the $5d_{xz,yz}$ states of A u are pushed up, crossing the Fermi level. We also find that for certain O configurations, the Ni atom has two holes in the degenerate $3d_{xz,yz}$ orbitals, forming a spin $S=1$ due to a large Hund interaction. The coupling between the $5d_{xz,yz}$ Au bands and the $3d_{xz,yz}$ of Ni states leads to a possible realization of a two-channel $S=1$ Kondo effect. While this kind of Kondo effect is commonly found in bulk systems, it is rarely observed in low dimensions. The estimated Kondo scale of the system lies within the present achievable experimental resolution in transport measurements. Another possible scenario for certain atomic configurations is that one of the holes resides in a $3d_{z^2}$ orbital, leading to a two-stage Kondo effect, the second one with SU(4) symmetry.
Within condensed-matter systems, strong electronic interactions often lead to exotic quantum phases. A recent manifestation of this is the unexpected observation of magnetic quantum oscillations and metallic thermal transport, both properties of syst ems with Fermi surfaces of itinerant quasiparticles, in the Kondo insulators SmB6 and YbB$_{12}$. To understand these phenomena, it is informative to study their evolution as the energy gap of the Kondo-Insulator state is closed by a large magnetic field. We show here that both the quantum-oscillation frequency and the cyclotron mass display a strong field dependence in the resulting high-field metallic state in $_{12}$. By tracking the Fermi-surface area, we conclude that the same quasiparticle band gives rise to the quantum oscillations in both insulating and metallic states. These data are understood most simply using a two-fluid picture where unusual quasiparticles, contributing little or nothing to charge transport, coexist with conventional fermions. In the metallic state this leads to a heavy-fermion bad metal with negligible magnetoresistance, relatively high resistivity and a very large Kadowaki-Woods ratio, underlining the exotic nature of the fermion ensemble inhabiting $_{12}$.
56 - Bimla Danu , Fakher Assaad , 2019
Motivated by recent STM experiments, we explore the magnetic field induced Kondo effect that takes place at symmetry protected level crossings in finite Co adatom chains. We argue that the effective two-level system realized at a level crossing acts as an extended impurity coupled to the conduction electrons of the substrate by a distribution of Kondo couplings at the sites of the chain. Using auxiliary-field quantum Monte Carlo simulations, which quantitatively reproduce the field dependence of the zero-bias signal, we show that a proper Kondo resonance is present at the sites where the effective Kondo coupling dominates. Our modeling and numerical simulations provide a theoretical basis for the interpretation of the STM spectrum in terms of level crossings of the Co adatom chains.
The electronic structure of a prototype Kondo system, a cobalt impurity in a copper host is calculated with accurate taking into account of correlation effects on the Co atom. Using the recently developed continuous-time QMC technique, it is possible to describe the Kondo resonance with a complete four-index Coulomb interaction matrix. This opens a way for completely first-principle calculations of the Kondo temperature. We have demonstrated that a standard practice of using a truncated Hubbard Hamiltonian to consider the Kondo physics can be quantitatively inadequate.
We investigate the electronic structure of cobalt atoms on a copper surface and in a copper host by combining density functional calculations with a numerically exact continuous-time quantum Monte Carlo treatment of the five-orbital impurity problem. In both cases we find low energy resonances in the density of states of all five Co $d$-orbitals. The corresponding self-energies indicate the formation of a Fermi liquid state at low temperatures. Our calculations yield the characteristic energy scale -- the Kondo temperature -- for both systems in good agreement with experiments. We quantify the charge fluctuations in both geometries and suggest that Co in Cu must be described by an Anderson impurity model rather than by a model assuming frozen impurity valency at low energies. We show that fluctuations of the orbital degrees of freedom are crucial for explaining the Kondo temperatures obtained in our calculations and measured in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا