ﻻ يوجد ملخص باللغة العربية
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5$f$ electrons and the heavy actinides that have localized 5$f$ electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantum Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal, which must also include the interactions between Pu 5$f$ electrons on different Pu atoms. For the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. Furthermore, we show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu 5$f$-ligand hybridization at the surface.
We have performed first-principles calculation of the surface and bulk wavefunctions of the Cu(111) surface and their hybridization energies to a Co adatom, including the potential scattering from the Co. By analyzing the calculated hybridization ene
We study a spin-1/2 Kondo impurity coupled to an unconventional host in which the density of band states vanishes either precisely at (``gapless systems) or on some interval around the Fermi level (``gappedsystems). Despite an essentially nonlinear b
In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The ex
By means of ab initio calculations we study the effect of O-doping of Au chains containing a nanocontact represented by a Ni atom as a magnetic impurity. In contrast to pure Au chains, we find that with a minimun O-doping the $5d_{xz,yz}$ states of A
We analyze the conduction bands of the one dimensional noble-metal chains that contain a Co magnetic impurity by means of ab initio calculations. We compare the results obtained for Cu and Ag pure chains, as well as O doped Cu, Ag and Au chains with