ﻻ يوجد ملخص باللغة العربية
Motivated by recent STM experiments, we explore the magnetic field induced Kondo effect that takes place at symmetry protected level crossings in finite Co adatom chains. We argue that the effective two-level system realized at a level crossing acts as an extended impurity coupled to the conduction electrons of the substrate by a distribution of Kondo couplings at the sites of the chain. Using auxiliary-field quantum Monte Carlo simulations, which quantitatively reproduce the field dependence of the zero-bias signal, we show that a proper Kondo resonance is present at the sites where the effective Kondo coupling dominates. Our modeling and numerical simulations provide a theoretical basis for the interpretation of the STM spectrum in terms of level crossings of the Co adatom chains.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t
Using a numerically exact first-principles many-body approach, we revisit the prototypical Kondo case of a cobalt impurity on copper. Even though this is considered a well understood example of the Kondo effect, we reveal an unexpectedly strong depen
We analyze the conduction bands of the one dimensional noble-metal chains that contain a Co magnetic impurity by means of ab initio calculations. We compare the results obtained for Cu and Ag pure chains, as well as O doped Cu, Ag and Au chains with
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where t
We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the strong covalent bond to a carbon atom removes that carbon atom without breaking the $C_{3}$ rotation symmetry, and we only retain the Hubbard int