ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524

123   0   0.0 ( 0 )
 نشر من قبل Cornelia Hanna Esther Schultz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE $gamma$ rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from $gamma$ rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a $gamma$-ray signal above 250 GeV of $(3.7 pm 0.7)$ per cent of the Crab Nebula flux with a statistical significance of 9.9 $sigma$. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE $gamma$-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of $2.97 pm 0.29$ between $sim$150 GeV and 1 TeV and an integral flux of $(9.3 pm 1.9)$ per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.

قيم البحث

اقرأ أيضاً

The high-frequency-peaked BL-Lacertae object objectname{1ES 0806+524}, at redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime by VERITAS between November 2006 and April 2008. These data encompass the two-, and three-telescop e commissioning phases, as well as observations with the full four-telescope array. objectname{1ES 0806+524} is detected with a statistical significance of 6.3 standard deviations from 245 excess events. Little or no measurable variability on monthly time scales is found. The photon spectrum for the period November 2007 to April 2008 can be characterized by a power law with photon index $3.6 pm 1.0_{mathrm{stat}} pm 0.3_{mathrm{sys}}$ between $sim$300 GeV and $sim$700 GeV. The integral flux above 300 GeV is $(2.2pm0.5_{mathrm{stat}}pm0.4_{mathrm{sys}})times10^{-12}:mathrm{cm}^{2}:mathrm{s}^{-1}$ which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous multiwavelength observations are combined with the VHE data to produce a broadband spectral energy distribution that can be reasonably described using a synchrotron-self Compton model.
We present the results of the first systematic long-term multi-color optical monitoring of the BL Lacertae object 1ES 0806+52.4. The monitoring was performed in multiple passbands with a 60/90 cm Schmidt telescope from December 2005 to February 2011. The overall brightness of this object decreased from 2005 December to 2008 December, and regained after that. A sharp outburst probably occurred around the end of our monitoring program. Overlapped on the long-term trend are some short-term small-amplitude oscillations. No intra-night variability was found in the object, which is in accord with the historical observations before 2005. By investigating the color behavior, we found strong bluer-when-brighter chromatism for the long-term variability of 1ES 0806+52.4. The total amplitudes at the c, i and o bands are 1.18, 1.12, and 1.02 mags, respectively. The amplitudes tend to increase toward shorter wavelength, which may be the major cause of bluer-when-brighter. Such bluer-when-brighter is also found in other blazars like S5 0716+714, OJ 287, etc. The hard X-ray data collected from the Swift/BAT archive was correlated with our optical data. No positive result was found, the reason of which may be that the hard X-ray flux is a combination of the synchrotron and inverse Compton emission but with different timescales and cadences under the leptonic Synchrotron-Self-Compton (SSC) model.
We present results of multi-wavelength (MWL) observations of the high-frequency-peaked BL Lacertae (HBL) object 1ES 0806+524 (z=0.138). Triggered by a high optical state, very high energy (VHE; E > 100 GeV) observations were carried out with the MAGI C stereoscopic system from January to March 2011. During the observations a relatively short VHE gamma-ray flare was detected that lasted no longer than one night. To complement the VHE observations, simultaneous MWL data were collected in high energy gamma-rays using the textit{Fermi Large Area Telescope (HE, 300 MeV - 100 GeV), in the X-ray and UV band with the textit{Swift} satellite, in the optical R--band through observations with the KVA telescope and in the radio band using the OVRO telescope. This constitutes the first time that such a broad band coverage has been obtained for this source. We study the source properties through the characterization of the spectral energy distribution (SED) and its evolution through two different VHE flux states. The SED can be modeled with a simple one-zone SSC model, resulting in parameters that are comparable to those obtained for other HBLs.
We report the results of our optical (VRI) photometric observations of the TeV blazar 1ES 0806$+$524 on 153 nights during 2011-2019 using seven optical telescopes in Europe and Asia. We investigated the variability of the blazar on intraday as well a s on long-term timescales. We examined eighteen intraday light curves for flux and color variations using the most reliable power-enhanced F-test and the nested ANOVA test. Only on one night was a small, but significant, variation found, in both $V$ band and $R$ band light curves. The $V-R$ color index was constant on every one of those nights. Flux density changes of around 80 % were seen over the course of these eight years in multiple bands. We found a weighted mean optical spectral index of 0.639$pm$0.002 during our monitoring period by fitting a power law ($F_{ u} propto u^{-alpha}$) in 23 optical ($VRI$) spectral energy distributions of 1ES 0806$+$524. We discuss different possible mechanisms responsible for blazar variability on diverse timescales.
Blazars, active galactic nuclei whose jet axis is pointed towards the observer, constitute the most numerous class of extragalactic very high energy (VHE, E > 100, GeV) gamma-ray emitters. The MAGIC experiment, a system of two Imaging Atmospheric Che renkov Telescopes located in the Canary Island of La Palma (Northern hemisphere), with an energy threshold of 50 GeV, is a well suited experiment for observations of such objects. Here we present the discovery of the BL Lac 1ES 1727+502 (z = 0.055) as VHE source. This object was identified as a promising TeV candidate based on archival data and the observation that lead to this detection was not triggered by any high state alert in other wavebands. The MAGIC observations are complemented by other observations are lower frequencies: optical data from the KVA telescope, UV, optical and X-ray archival data taken with the instruments on board the Swift satellite and high energy (HE, 300 MeV < E < 100 GeV) data from the textit{Fermi}-LAT instrument. We studied the spectral energy distribution of 1ES 1727+502 and interpreted it with a one-zone synchrotron self-Compton model with parameters that are typical for this class of sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا