ترغب بنشر مسار تعليمي؟ اضغط هنا

Six-year Optical Monitoring of BL Lacertae Object 1ES 0806+52.4

70   0   0.0 ( 0 )
 نشر من قبل Zhongyi Man
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the first systematic long-term multi-color optical monitoring of the BL Lacertae object 1ES 0806+52.4. The monitoring was performed in multiple passbands with a 60/90 cm Schmidt telescope from December 2005 to February 2011. The overall brightness of this object decreased from 2005 December to 2008 December, and regained after that. A sharp outburst probably occurred around the end of our monitoring program. Overlapped on the long-term trend are some short-term small-amplitude oscillations. No intra-night variability was found in the object, which is in accord with the historical observations before 2005. By investigating the color behavior, we found strong bluer-when-brighter chromatism for the long-term variability of 1ES 0806+52.4. The total amplitudes at the c, i and o bands are 1.18, 1.12, and 1.02 mags, respectively. The amplitudes tend to increase toward shorter wavelength, which may be the major cause of bluer-when-brighter. Such bluer-when-brighter is also found in other blazars like S5 0716+714, OJ 287, etc. The hard X-ray data collected from the Swift/BAT archive was correlated with our optical data. No positive result was found, the reason of which may be that the hard X-ray flux is a combination of the synchrotron and inverse Compton emission but with different timescales and cadences under the leptonic Synchrotron-Self-Compton (SSC) model.

قيم البحث

اقرأ أيضاً

We have monitored the BL Lacertae object S5 0716+714 simultaneously in the B, R and I bands on three nights in November 2014. The average time resolution is quite high (73s, 34s, 58s for the filters B, R and I), which can help us trace the profile of the variation and search for the short inter-band time delay. Intra-day variability was about 0.1 mag on the first two nights and more than 0.3 mag on the third. A bluer-when-brighter color behavior was found. An clear loop path can be seen on the color-magnitude diagram of the third night, revealing possible time delays between variations at high and low energies. It is the first time that the intra-day spectral hysteresis loop has been found so obviously in the optical band. We used the interpolated cross-correlation function method to further confirm the time delay and calculated the values of lag between light curves at different wavelengths on each night. On the third night, variations in the R and B bands is approximately 1.5 minutes lagging behind the I band. Such optical time delay is probably due to the interplay of different processes of electrons in the jet of the blazar.
The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE $gamma$ rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavele ngth observations from $gamma$ rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a $gamma$-ray signal above 250 GeV of $(3.7 pm 0.7)$ per cent of the Crab Nebula flux with a statistical significance of 9.9 $sigma$. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE $gamma$-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of $2.97 pm 0.29$ between $sim$150 GeV and 1 TeV and an integral flux of $(9.3 pm 1.9)$ per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.
We monitored BL Lacertae simultaneously in the optical B, V, R and I bands for 13 nights during the period 2012-2016. The variations were well correlated in all bands and the source showed significant intraday variability (IDV). We also studied its o ptical flux and colour behaviour, and searched for inter-band time lags. A strong bluer-when-brighter chromatism was found on the intra-night time-scale. The spectral changes are not sensitive to the host galaxy contribution. Cross-correlation analysis revealed possible time delay of about 10 min between variations in the V and R bands. We interpreted the observed flares in terms of the model consisting of individual synchrotron pulses.
199 - S.S. Sun , H.L. Li (2 2021
We here report a monitor of the BL Lac object 1ES 1218+304 in both B- and R-bands by the GWAC-F60A telescope in eight nights, when it was triggerd to be at its highest X-ray flux in history by the VERITAS Observatory and Swift follow-ups. Both ANOVA and $chi^2$-test enable us to clearly reveal an intra-day variability in optical wavelengths in seven out of the eight nights. A bluer-when-brighter chromatic relationship has been clearly identified in five out of the eight nights, which can be well explained by the shock-in-jet model. In addtion, a quasi-periodic oscilation phenomenon in both bands could be tentatively identified in the first night. A positive delay between the two bands has been revealed in three out of the eight nights, and a negative one in the other nights. The identfied minimum time delay enables us to estimate the $M_{mathrm{BH}}=2.8times10^7 rm M_{odot}$that is invalid.
We monitored BL Lacertae for 13 nights in optical B, V, R, and I bands during October and November 2014 including quasi-simultaneous observations in V and R bands using two optical telescopes in India. We have studied multi-band optical flux variatio ns, colour variation and spectral changes in this blazar. Source was found to be active during the whole monitoring period and showed significant intraday variability on 3 nights in V and R filters while displayed hints of variability on 6 other dates in R passband and on 2 nights in V filter. From the colour-magnitude analysis of the source we found that the spectra of the target gets flatter as it becomes brighter on intra-night timescale. Using discrete correlation technique, we found that intraday light curves in both V and R filters are almost consistent and well correlated with each other. We also generated spectral energy distribution (SED) of the target using the B, V, R, and I data sets for all 13 nights which could help us investigate the physical process responsible for the observed variations in BL Lacertae objects. We also discuss possible physical causes of the observed spectral variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا