ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying flux variability of the BL Lac object 1ES0806+524 with MAGIC in a multi-wavelength context

237   0   0.0 ( 0 )
 نشر من قبل Karsten Berger
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of multi-wavelength (MWL) observations of the high-frequency-peaked BL Lacertae (HBL) object 1ES 0806+524 (z=0.138). Triggered by a high optical state, very high energy (VHE; E > 100 GeV) observations were carried out with the MAGIC stereoscopic system from January to March 2011. During the observations a relatively short VHE gamma-ray flare was detected that lasted no longer than one night. To complement the VHE observations, simultaneous MWL data were collected in high energy gamma-rays using the textit{Fermi Large Area Telescope (HE, 300 MeV - 100 GeV), in the X-ray and UV band with the textit{Swift} satellite, in the optical R--band through observations with the KVA telescope and in the radio band using the OVRO telescope. This constitutes the first time that such a broad band coverage has been obtained for this source. We study the source properties through the characterization of the spectral energy distribution (SED) and its evolution through two different VHE flux states. The SED can be modeled with a simple one-zone SSC model, resulting in parameters that are comparable to those obtained for other HBLs.



قيم البحث

اقرأ أيضاً

The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE $gamma$ rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavele ngth observations from $gamma$ rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a $gamma$-ray signal above 250 GeV of $(3.7 pm 0.7)$ per cent of the Crab Nebula flux with a statistical significance of 9.9 $sigma$. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE $gamma$-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of $2.97 pm 0.29$ between $sim$150 GeV and 1 TeV and an integral flux of $(9.3 pm 1.9)$ per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.
We present the results of our power spectral analysis for the BL Lac object PKS 0735+178 utilizing the Fermi-LAT survey at high-energy $gamma$-rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencie s. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (i) the optical variability is consistent with a pure red noise, for which the power spectral density can well be approximated by a single power-law throughout the entire time domain probed; (ii) the slope of power spectral density at high-energy $gamma$-rays ($sim 1$), is significantly flatter than that found at radio and optical frequencies ($sim 2$) within the corresponding time variability range; (iii) for the derived power spectra we did not detect any low-frequency flattening, nor do we see any evidence for cut-offs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the $gamma$-ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998-2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.
We present the results of photometric (V band) and polarimetric observations of the blazar BL Lac during 2008--2010 using TRISPEC attached to the KANATA 1.5-m telescope in Japan. The data reveal a great deal of variability ranging from days to months with detection of strong variations in fractional polarization. The V band flux strongly anti-correlates with the degree of polarization during the first of two observing seasons but not during the second. The direction of the electric vector, however, remained roughly constant during all our observations. These results are consistent with a model with at least two emission regions being present, with the more variable component having a polarization direction nearly perpendicular to that of the relatively quiescent region so that a rising flux can produce a decline in degree of polarization. We also computed models involving helical jet structures and single transverse shocks in jets and show that they might also be able to agree with the anti-correlations between flux and fractional polarization.
165 - B. Rani 2015
We present a high-frequency very long baseline interferometry (VLBI) kinematical study of the BL Lac object S5 0716+714 over the time period of September 2008 to October 2010. The aim of the study is to investigate the relation of the jet kinematics to the observed broadband flux variability. We find significant non-radial motions in the jet outflow of the source. In the radial direction, the highest measured apparent speed is sim37 c, which is exceptionally high, especially for a BL Lac object. Patterns in the jet flow reveal a roughly stationary feature sim0.15 mas downstream of the core. The long-term fits to the component trajectories reveal acceleration in the sub-mas region of the jet. The measured brightness temperature, T_{B}, follows a continuous trend of decline with distance, T_B propto r_{jet}^{-(2.36pm0.41)}, which suggests a gradient in Doppler factor along the jet axis. Our analysis suggest that a moving disturbance (or a shock wave) from the base of the jet produces the high-energy (optical to gamma-ray) variations upstream of the 7 mm core, and then later causes an outburst in the core. Repetitive optical/gamma-ray flares and the curved trajectories of the associated components suggest that the shock front propagates along a bent trajectory or helical path. Sharper gamma-ray flares could be related to the passage of moving disturbances through the stationary feature. Our analysis suggests that the gamma-ray and radio emission regions have different Doppler factors.
115 - Sunil Chandra 2015
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of January 2015. Observed almost simultaneously in the optical, X-rays and {gamma}-ray s, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A detection in the TeV (VHE) was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about 5-days apart, were seen in almost all the energy bands. The multi-wavelength light-curves, spectral energy distribution (SED) and polarization are modeled using the time-dependent code developed by Zhang et al. (2014). This model assumes a straight jet threaded by large scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to re-connections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of magnetic field during quiescent and flaring states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا