ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Variability of the TeV Blazar 1ES 0806+524 on Diverse Timescales

100   0   0.0 ( 0 )
 نشر من قبل Ashwani Pandey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of our optical (VRI) photometric observations of the TeV blazar 1ES 0806$+$524 on 153 nights during 2011-2019 using seven optical telescopes in Europe and Asia. We investigated the variability of the blazar on intraday as well as on long-term timescales. We examined eighteen intraday light curves for flux and color variations using the most reliable power-enhanced F-test and the nested ANOVA test. Only on one night was a small, but significant, variation found, in both $V$ band and $R$ band light curves. The $V-R$ color index was constant on every one of those nights. Flux density changes of around 80 % were seen over the course of these eight years in multiple bands. We found a weighted mean optical spectral index of 0.639$pm$0.002 during our monitoring period by fitting a power law ($F_{ u} propto u^{-alpha}$) in 23 optical ($VRI$) spectral energy distributions of 1ES 0806$+$524. We discuss different possible mechanisms responsible for blazar variability on diverse timescales.

قيم البحث

اقرأ أيضاً

We present our optical photometric observations of three TeV blazars, PKS 1510-089, PG 1553+113 and Mrk 501 taken using two telescopes in India, one in Bulgaria, one in Greece and one in Serbia during 2012 - 2014. These observations covered a total o f 95 nights with a total of 202 B filter frames, 247 images in V band, 817 in R band while 229 images were taken in the I filter. This work is focused on multi-band flux and colour variability studies of these blazars on diverse timescales which are useful in understanding the emission mechanisms. We studied the variability characteristics of above three blazars and found all to be active over our entire observational campaigns. We also searched for any correlation between the brightness of the sources and their colour indices. During the times of variability, no significant evidence for the sources to display spectral changes correlated with magnitude was found on timescales of a few months. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux variability.
A detailed analysis of the optical polarimetric variability of the TeV blazar 1ES 1959+650 from 2007 October 18 to 2011 May 5 is presented. The source showed a maximum and minimum brightness states in the R-band of 14.08$pm$0.03 mag and 15.20$pm$0.03 mag, respectively, with a maximum variation of 1.12 mag, and also a maximum polarization degree of $P=$(12.2$pm$0.7)%, with a maximum variation of 10.7%. From August to November 2009, a correlation between the optical $R$-band flux and the degree of linear polarization was found, with a correlation coefficient $r_{pol}$=0.984$pm$0.025. The source presented a preferential position angle of optical polarization of $sim153^{circ}$, with variations of $10degr$-$50degr$, that is in agreement with the projected position angle of the parsec scale jet found at 43 GHz. From the Stokes parameters we infer the existence of two optically-thin synchrotron components that contribute to the polarized flux. One of them is stable, with a constant polarization degree of 4%. Assuming a stationary shock for the variable component, we estimated some parameters associated with the physics of the relativistic jet: the magnetic field, $Bsim$0.06 G, the Doppler factor, $delta_{0}sim$23, the viewing angle, $Phisim2.4degr$, and the size of the emission region $r_bsim5.6times10^{17}$ cm. Our study is consistent with the spine-sheath model to explain the polarimetric variability displayed by this source during our monitoring.
74 - A. Agarwal , , A. C. Gupta 2015
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of 3C 454.3, 3C 279 and S5 0716+714. CCD magnitudes in B, V, R and I pass-bands were determined for $sim$ 7000 new optical observations from 1 14 nights made during 2011 - 2014, with an average length of $sim$ 4 h each, at seven optical telescopes. We measured multiband optical flux and colour variations on diverse timescales. We also investigated its spectral energy distribution using B, V, R, I, J and K pass-band data. We discuss possible physical causes of the observed spectral variability.
Context. The TeV BL Lac object PG 1553+113 is one of the primary candidates for a binary supermassive black hole system. Aims. We study the flux and spectral variability of PG 1553+113 on intra-night to long-term timescales using (i) BVRI data collec ted over 76 nights from January 2016 to August 2019 involving nine optical telescopes and (ii) historical VR data (including ours) obtained for the period from 2005 to 2019. Methods. We analysed the light curves using various statistical tests, fitting and cross-correlation techniques, and methods for the search for periodicity. We examined the colour-magnitude diagrams before and after the corresponding light curves were corrected for the long-term variations. Results. Our intra-night monitoring, supplemented with literature data, results in a low duty cycle of ~(10-18)%. In April 2019, we recorded a flare, which marks the brightest state of PG 1553+113 for the period from 2005 to 2019: R = 13.2 mag. This flare is found to show a clockwise spectral hysteresis loop on its VR colour-magnitude diagram and a time lag in the sense that the V-band variations lead the R-band ones. We obtain estimates of the radius, the magnetic field strength, and the electron energy that characterize the emission region related to the flare. We find a median period of (2.21 +/- 0.04) years using the historical light curves. In addition, we detect a secondary period of about 210 days using the historical light curves corrected for the long-term variations. We briefly discuss the possible origin of this period.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope (X RT), high-energy gamma-ray observations with the Fermi Large Area Telescope (LAT) and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 17 April 2012 and 1 June 2012 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected-emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected-emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا