ﻻ يوجد ملخص باللغة العربية
The formation of extended electron states in one-dimensional nanostructures is of key importance for the function of molecular electronics devices. Here we study the effects of strong electron-phonon interaction on the formation of extended electronic states in intentionally created Cl vacancy pairs and chains in a NaCl bilayer on Cu(111). The interaction between the vacancies was tailored by fabricating vacancy pairs and chains of different orientation and separation with atomic precision using vertical manipulation. Small separation of divacancies led to the formation of symmetric and antisymmetric vacancy states and localized interface-states. By scanning tunneling spectroscopy (STS) we measured their energy splitting and broadening as a function of the inter-vacancy separation. Unexpectedly, the energy splitting between the vacancy states is enlarged by level repulsion resulting from phonon dressing of the electronic states, as evidenced by theory. Already for a few coupled vacancies we observe an emerging band structure of the defect band.
We estimate the spin relaxation rate due to spin-orbit coupling and acoustic phonon scattering in weakly-confined quantum dots with up to five interacting electrons. The Full Configuration Interaction approach is used to account for the inter-electro
We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The
Perovskites have attracted much attention due to their remarkable optical properties. While it is well established that excitons dominate their optical response, the impact of higher excitonic states and formation of phonon sidebands in optical spect
In this work, we performed magnetoresistance measurement in a hybrid system consisting of an arc-shaped quantum point contact (QPC) and a flat, rectangular QPC, both of which together form an electronic cavity between them. The results highlight a tr
The search of new means of generating and controlling topological states of matter is at the front of many joint efforts, including bandgap engineering by doping and light-induced topological states. Most of our understading, however, is based on a s