ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance in an electronic cavity coupled to one-dimensional systems

106   0   0.0 ( 0 )
 نشر من قبل Chengyu Yan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we performed magnetoresistance measurement in a hybrid system consisting of an arc-shaped quantum point contact (QPC) and a flat, rectangular QPC, both of which together form an electronic cavity between them. The results highlight a transition between collimation-induced resistance dip to a magnetoresistance peak as the strength of coupling between the QPC and the electronic cavity was increased. The initial results show the promise of hybrid quantum system for future quantum technologies.



قيم البحث

اقرأ أيضاً

We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 $mu$ m along the cavity axis. Each chain can contain up to 20 individually addressable Ybtextsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with $lesssim$10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.
Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings Hubbard model, have the potential to emulate a wide range of condensed matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect ca n be realised. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read, which is the groundstate of a Hall Liquid with a 3-body interaction. In this paper we show how an effective 3-body interaction can be generated within the Cavity QED framework, and that a Pfaffian-like groundstate of these systems exists.
We experimentally study the tunability of the cooperativity in coupled spin--cavity systems by changing the magnetic state of the spin system via an external control parameter. As model system, we use the skyrmion host material Cu$_2$OSeO$_3$ coupled to a microwave cavity resonator. In the different magnetic phases we measure a dispersive coupling between the resonator and the magnon modes and model our results by using the input--output formalism. Our results show a strong tunability of the normalized coupling rate by magnetic field, allowing us to change the magnon--photon cooperativity from 1 to 60 at the phase boundaries of the skyrmion lattice state.
We investigate the possible classification of zero-temperature spin-gapped phases of multicomponent electronic systems in one spatial dimension. At the heart of our analysis is the existence of non-perturbative duality symmetries which emerge within a low-energy description. These dualities fall into a finite number of classes that can be listed and depend only on the algebraic properties of the symmetries of the system: its physical symmetry group and the maximal continuous symmetry group of the interaction. We further characterize possible competing orders associated to the dualities and discuss the nature of the quantum phase transitions between them. Finally, as an illustration, the duality approach is applied to the description of the phases of two-leg electronic ladders for incommensurate filling.
The formation of extended electron states in one-dimensional nanostructures is of key importance for the function of molecular electronics devices. Here we study the effects of strong electron-phonon interaction on the formation of extended electroni c states in intentionally created Cl vacancy pairs and chains in a NaCl bilayer on Cu(111). The interaction between the vacancies was tailored by fabricating vacancy pairs and chains of different orientation and separation with atomic precision using vertical manipulation. Small separation of divacancies led to the formation of symmetric and antisymmetric vacancy states and localized interface-states. By scanning tunneling spectroscopy (STS) we measured their energy splitting and broadening as a function of the inter-vacancy separation. Unexpectedly, the energy splitting between the vacancy states is enlarged by level repulsion resulting from phonon dressing of the electronic states, as evidenced by theory. Already for a few coupled vacancies we observe an emerging band structure of the defect band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا