ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust edge states induced by electron-phonon interaction in graphene nanoribbons

368   0   0.0 ( 0 )
 نشر من قبل Hernan Calvo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search of new means of generating and controlling topological states of matter is at the front of many joint efforts, including bandgap engineering by doping and light-induced topological states. Most of our understading, however, is based on a single particle picture. Topological states in systems including interaction effects, such as electron-electron and electron-phonon, remain less explored. By exploiting a non-perturbative and non-adiabatic picture, here we show how the interaction between electrons and a coherent phonon mode can lead to a bandgap hosting edge states of topological origin. Further numerical simulations witness the robustness of these states against different types of disorder. Our results contribute to the search of topological states, in this case in a minimal Fock space.

قيم البحث

اقرأ أيضاً

In the phenomenon of electromagnetically induced transparency1 (EIT) of a three-level atomic system, the linear susceptibility at the dipole-allowed transition is canceled through destructive interference of the direct transition and an indirect tran sition pathway involving a meta-stable level, enabled by optical pumping. EIT not only leads to light transmission at otherwise opaque atomic transition frequencies, but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this letter, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active {Gamma}-point optical phonon, whose function here is similar to that of the meta-stable level in EIT of atomic systems. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating, and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm-1, based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon non-linear optics and slow light in this novel two-dimensional material, without external optical pumping and at room temperature.
Photo-induced edge states in low dimensional materials have attracted considerable attention due to the tunability of topological properties and dispersion. Specifically, graphene nanoribbons have been predicted to host chiral edge modes upon irradia tion with circularly polarized light. Here, we present numerical calculations of time-resolved angle resolved photoemission spectroscopy (trARPES) and time-resolved resonant inelastic x-ray scattering (trRIXS) of a graphene nanoribbon. We characterize pump-probe spectroscopic signatures of photo-induced edge states, illustrate the origin of distinct spectral features that arise from Floquet topological edge modes, and investigate the roles of incoming photon energies and finite core-hole lifetime in RIXS. With momentum, energy, and time resolution, pump-probe spectroscopies can play an important role in understanding the behavior of photo-induced topological states of matter.
Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated to local ized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between tip and sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them basic elements of spintronic devices.
The magnetoconductance of graphene nanoribbons with rough zigzag and armchair edges is studied by numerical simulations. nanoribbons with sufficiently small bulk disorder show a pronounced magnetoconductance minimum at cyclotron radii close to the ri bbon width, in close analogy to the wire peak observed in conventional semiconductor quantum wires. In zigzag nanoribbons, this feature becomes visible only above a threshold amplitude of the edge roughness, as a consequence of the reduced current density close to the edges.
We discuss valley current, which is carried by quasiparticles in graphene. We show that the valley current arises owing to a peculiar term in the electron-phonon collision integral that mixes the scalar and vector gauge-field-like vertices in the ele ctron-phonon interaction. This mixing makes collisions of phonons with electrons sensitive to their chirality, which is opposite in two valleys. As a result of collisions with phonons, electrons of the different valleys deviate in opposite directions. Breaking the spatial inversion symmetry is not needed for a valley-dependent deviation of the quasiparticle current. The effect exists both in pristine graphene or bilayer graphene samples, and it increases with temperature owing to a higher rate of collisions with phonons at higher temperatures. The valley current carried by quasiparticles could be detected by measuring the electric current using a nonlocal transformer of a suitable design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا