ترغب بنشر مسار تعليمي؟ اضغط هنا

An inversion formula for transport equation in 3-dimensions using several complex variable analysis

36   0   0.0 ( 0 )
 نشر من قبل Seyed Majid Saberi Fathi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the photon stationary transport equation has been extended from $mathbb{R}^3$ to $mathbb{C}^3$. A solution of the inverse problem is obtained on a hyper-sphere and a hyper-cylinder as X-ray and Radon transform, respectively. We show that these results can be transformed into each other and they agree with known results.

قيم البحث

اقرأ أيضاً

A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. He re, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.
109 - Keith A. Earle 2011
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knut h and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.
We study the nonrelativistic quantum Coulomb hamiltonian (i.e., inverse of distance potential) in $R^n$, n = 1, 2, 3. We characterize their self-adjoint extensions and, in the unidimensional case, present a discussion of controversies in the literatu re, particularly the question of the permeability of the origin. Potentials given by fundamental solutions of Laplace equation are also briefly considered.
We study meromorphic extensions of distance and tube zeta functions, as well as of geometric zeta functions of fractal strings. The distance zeta function $zeta_A(s):=int_{A_delta} d(x,A)^{s-N}mathrm{d}x$, where $delta>0$ is fixed and $d(x,A)$ denote s the Euclidean distance from $x$ to $A$ extends the definition of the zeta function associated with bounded fractal strings to arbitrary bounded subsets $A$ of $mathbb{R}^N$. The abscissa of Lebesgue convergence $D(zeta_A)$ coincides with $D:=overlinedim_BA$, the upper box dimension of $A$. The complex dimensions of $A$ are the poles of the meromorphic continuation of the fractal zeta function of $A$ to a suitable connected neighborhood of the critical line ${Re(s)=D}$. We establish several meromorphic extension results, assuming some suitable information about the second term of the asymptotic expansion of the tube function $|A_t|$ as $tto0^+$, where $A_t$ is the Euclidean $t$-neighborhood of $A$. We pay particular attention to a class of Minkowski measurable sets, such that $|A_t|=t^{N-D}(mathcal M+O(t^gamma))$ as $tto0^+$, with $gamma>0$, and to a class of Minkowski nonmeasurable sets, such that $|A_t|=t^{N-D}(G(log t^{-1})+O(t^gamma))$ as $tto0^+$, where $G$ is a nonconstant periodic function and $gamma>0$. In both cases, we show that $zeta_A$ can be meromorphically extended (at least) to the open right half-plane ${Re(s)>D-gamma}$. Furthermore, up to a multiplicative constant, the residue of $zeta_A$ evaluated at $s=D$ is shown to be equal to $mathcal M$ (the Minkowski content of $A$) and to the mean value of $G$ (the average Minkowski content of $A$), respectively. Moreover, we construct a class of fractal strings with principal complex dimensions of any prescribed order, as well as with an infinite number of essential singularities on the critical line ${Re(s)=D}$.
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of th e twist parameter $q$. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا