ﻻ يوجد ملخص باللغة العربية
We study the nonrelativistic quantum Coulomb hamiltonian (i.e., inverse of distance potential) in $R^n$, n = 1, 2, 3. We characterize their self-adjoint extensions and, in the unidimensional case, present a discussion of controversies in the literature, particularly the question of the permeability of the origin. Potentials given by fundamental solutions of Laplace equation are also briefly considered.
We develop a general technique for finding self-adjoint extensions of a symmetric operator that respect a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrodinger operators with singul
The Cauchy problem is studied for the self-adjoint and non-self-adjoint Schroedinger equations. We first prove the existence and uniqueness of solutions in the weighted Sobolev spaces. Secondly we prove that if potentials are depending continuously a
We study meromorphic extensions of distance and tube zeta functions, as well as of geometric zeta functions of fractal strings. The distance zeta function $zeta_A(s):=int_{A_delta} d(x,A)^{s-N}mathrm{d}x$, where $delta>0$ is fixed and $d(x,A)$ denote
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on $mathbb E^2$ and $mathbb S^2$ and for a family of systems defined on constant curvature manifolds. The procedure results e
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the su