ﻻ يوجد ملخص باللغة العربية
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter $q$. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered. For parameters close to the vortex limit, and for a system of spiral waves with well-separated centres, laws of motion of the centres are
The complex Ginzburg-Landau equation (CGLE) is a general model of spatially extended nonequilibrium systems. In this paper, an analytical method for a variable coefficient CGLE is presented to obtain exact solutions. Variable transformations for spac
The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN wh
We propose a Ginzburg-Landau model for the expansion of a dodecahedral viral capsid during infection or maturation. The capsid is described as a dodecahedron whose faces, meant to model rigid capsomers, are free to move independent of each other, and
We investigate the influence of walls and corners (with Dirichlet and Neumann boundary conditions) in the evolution of twodimensional autooscillating fields described by the complex Ginzburg-Landau equation. Analytical solutions are found, and argume