ﻻ يوجد ملخص باللغة العربية
A recently proposed approach for avoiding the ultraviolet divergence of Hamiltonians with particle creation is based on interior-boundary conditions (IBCs). The approach works well in the non-relativistic case, that is, for the Laplacian operator. Here, we study how the approach can be applied to Dirac operators. While this has been done successfully already in 1 space dimension, and more generally for codimension-1 boundaries, the situation of point sources in 3 dimensions corresponds to a codimension-3 boundary. One would expect that, for such a boundary, Dirac operators do not allow for boundary conditions because they are known not to allow for point interactions in 3d, which also correspond to a boundary condition. And indeed, we confirm this expectation here by proving that there is no self-adjoint operator on (a truncated) Fock space that would correspond to a Dirac operator with an IBC at configurations with a particle at the origin. However, we also present a positive result showing that there are self-adjoint operators with IBC (on the boundary consisting of configurations with a particle at the origin) that are, away from those configurations, given by a Dirac operator plus a sufficiently strong Coulomb potential.
We are dealing with boundary conditions for Dirac-type operators, i.e., first order differential operators with matrix-valued coefficients, including in particular physical many-body Dirac operators. We characterize (what we conjecture is) the genera
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock sp
We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knut
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are