ﻻ يوجد ملخص باللغة العربية
NGC 4258 is the galaxy with the most accurate (maser-based) determination for the mass of the supermassive black hole (SMBH) in its nucleus. In this work we present a two-dimensional mapping of the stellar kinematics in the inner 3.0 x 3.0 arcsec = 100 x 100 pc of NGC 4258 using adaptative-optics observations obtained with the Near-Infrared Integral Field Spectrograph of the GEMINI North telescope at a 0.11 arcsec (4 pc) angular resolution. The observations resolve the radius of influence of the SMBH, revealing an abrupt increase in the stellar velocity dispersion within 10 pc from the nucleus, consistent with the presence of a SMBH there. Assuming that the galaxy nucleus is in a steady state and that the velocity dispersion ellipsoid is aligned with a cylindrical coordinate system, we constructed a Jeans anisotropic dynamical model to fit the observed kinematics distribution. Our dynamical model assumes that the galaxy has axial symmetry and is constructed using the multi-gaussian expansion method to parametrize the observed surface brightness distribution. The Jeans dynamical model has three free parameters: the mass of the central SMBH, the mass-luminosity ratio of the galaxy and the anisotropy of the velocity distribution. We test two types of models: one with constant velocity anisotropy, and another with variable anisotropy. The model that best reproduces the observed kinematics was obtained considering that the galaxy has radially varying anisotropy, being the best-fitting parameters with 3$sigma$ significance $M_bullet=4.8^{+0.8}_{-0.9}times 10^7,{rm M_odot}$ and $Gamma_k = 4.1^{+0.4}_{-0.5}$. This value for the mass of the SMBH is just 25 per cent larger than that of the maser determination and 50 per cent larger that a previous stellar dynamical determination obtained via Schwarzschild models.
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy
We determine the mass of the black hole at the center of the spiral galaxy NGC 4258 by constructing axisymmetric dynamical models of the galaxy. These models are constrained by high spatial resolution imaging and long-slit spectroscopy of the nuclear
We determine the mass of the nuclear black hole ($M$) in NGC 3706, an early type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxys major axis at larger radii. We fi
We present multi-object spectroscopic observations of 23 globular cluster candidates (GCCs) in the prototypical megamaser galaxy NGC 4258, carried out with the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. The candidates have been selecte
We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2-1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.044 resolution. The disk exhibits regular rotational kinematics and central high-velo