ترغب بنشر مسار تعليمي؟ اضغط هنا

The Black Hole Mass and the Stellar Ring in NGC 3706

124   0   0.0 ( 0 )
 نشر من قبل Kayhan Gultekin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the mass of the nuclear black hole ($M$) in NGC 3706, an early type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxys major axis at larger radii. We fit new HST/STIS and archival data with axisymmetric orbit models to determine $M$, mass-to-light ratio ($Upsilon_V$), and dark matter halo profile. The best-fit model parameters with 1$sigma$ uncertainties are $M = (6.0^{+0.7}_{-0.9}) times 10^8 M_{scriptscriptstyle odot}$ and $Upsilon_V = 6.0 pm 0.2 M_{scriptscriptstyle odot} L_{{scriptscriptstyle odot},V}^{-1}$ at an assumed distance of 46 Mpc. The models are inconsistent with no black hole at a significance of $Deltachi^2 = 15.4$ and require a dark matter halo to adequately fit the kinematic data, but the fits are consistent with a large range of plausible dark matter halo parameters. The ring is inconsistent with a population of co-rotating stars on circular orbits, which would produce a narrow line-of-sight velocity distribution (LOSVD). Instead, the rings LOSVD has a small value of $|V|/sigma$, the ratio of mean velocity to velocity dispersion. Based on the observed low $|V|/sigma$, our orbit modeling, and a kinematic decomposition of the ring from the bulge, we conclude that the stellar ring contains stars that orbit in both directions. We consider potential origins for this unique feature, including multiple tidal disruptions of stellar clusters, a change in the gravitational potential from triaxial to axisymmetric, resonant capture and inclining of orbits by a binary black hole, and multiple mergers leading to gas being funneled to the center of the galaxy.



قيم البحث

اقرأ أيضاً

The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy of different techniques, and for investigating the assumptions inherent in each method. NGC 4151 is one of those rare galaxies for which multiple methods can be used: stellar and gas dynamical modeling because of its proximity ($D=15.8pm0.4$ Mpc from Cepheids), and reverberation mapping because of its active accretion. In this work, we re-analyzed $H-$band integral field spectroscopy of the nucleus of NGC 4151 from Gemini NIFS, improving the analysis at several key steps. We then constructed a wide range of axisymmetric dynamical models with the new orbit-superposition code Forstand. One of our primary goals is to quantify the systematic uncertainties in $M_mathrm{BH}$ arising from different combinations of the deprojected density profile, inclination, intrinsic flattening, and mass-to-light ratio. As a consequence of uncertainties on the stellar luminosity profile arising from the presence of the AGN, our constraints on mbh are rather weak. Models with a steep central cusp are consistent with no black hole; however, in models with more moderate cusps, the black hole mass lies within the range of $0.25times10^7,M_odot lesssim M_mathrm{BH} lesssim 3times10^7,M_odot$. This measurement is somewhat smaller than the earlier analysis presented by Onken et al., but agrees with previous $M_mathrm{BH}$ values from gas dynamical modeling and reverberation mapping. Future dynamical modeling of reverberation data, as well as IFU observations with JWST, will aid in further constraining $M_mathrm{BH}$ in NGC 4151.
At the highest redshifts, z>6, several tens of luminous quasars have been detected. The search for fainter AGN, in deep X-ray surveys, has proven less successful, with few candidates to date. An extrapolation of the relationship between black hole (B H) and bulge mass would predict that the sample of z>6 galaxies host relatively massive BHs (>1e6 Msun), if one assumes that total stellar mass is a good proxy for bulge mass. At least a few of these BHs should be luminous enough to be detectable in the 4Ms CDFS. The relation between BH and stellar mass defined by local moderate-luminosity AGN in low-mass galaxies, however, has a normalization that is lower by approximately an order of magnitude compared to the BH-bulge mass relation. We explore how this scaling changes the interpretation of AGN in the high-z Universe. Despite large uncertainties, driven by those in the stellar mass function, and in the extrapolation of local relations, one can explain the current non-detection of moderate-luminosity AGN in Lyman Break Galaxies if galaxies below 1e11 Msun are characterized by the low-normalization scaling, and, even more so, if their Eddington ratio is also typical of moderate-luminosity AGN rather than luminous quasars. AGN being missed by X-ray searches due to obscuration or instrinsic X-ray weakness also remain a possibility.
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar su rface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scalin g technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO~J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6x10^5 solar masses.
448 - Mario Pasquato 2009
[abridged] Theoretical investigations have suggested the presence of Intermediate Mass Black Holes (IMBHs, with masses in the 100-10000 Msun range) in the cores of some Globular Clusters (GCs). In this paper we present the first application of a new technique to determine the presence or absence of a central IMBH in globular clusters that have reached energy equipartition via two-body relaxation. The method is based on the measurement of the radial profile for the average mass of stars in the system, using the fact that a quenching of mass segregation is expected when an IMBH is present. Here we measure the radial profile of mass segregation using main-sequence stars for the globular cluster NGC 2298 from resolved source photometry based on HST-ACS data. The observations are compared to expectations from direct N-body simulations of the dynamics of star clusters with and without an IMBH. The mass segregation profile for NGC 2298 is quantitatively matched to that inferred from simulations without a central massive object over all the radial range probed by the observations, that is from the center to about two half-mass radii. Profiles from simulations containing an IMBH more massive than ~ 300-500 Msun (depending on the assumed total mass of NGC 2298) are instead inconsistent with the data at about 3 sigma confidence, irrespective of the IMF and binary fraction chosen for these runs. While providing a null result in the quest of detecting a central black hole in globular clusters, the data-model comparison carried out here demonstrates the feasibility of the method which can also be applied to other globular clusters with resolved photometry in their cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا