ﻻ يوجد ملخص باللغة العربية
We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2-1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.044 resolution. The disk exhibits regular rotational kinematics and central high-velocity emission (+/-500 km/s) consistent with the presence of a compact central mass. We construct models for a thin, dynamically cold disk in the gravitational potential of the host galaxy and black hole, and fit the beam-smeared model line profiles directly to the ALMA data cube. Model fits successfully reproduce the disk kinematics out to r=200 pc. Fitting models just to spatial pixels within projected r=50 pc of the nucleus (two times larger than the black holes gravitational radius of influence), we find M_BH=6.64(-0.63,+0.65)*10^8 solar masses. This observation demonstrates ALMAs powerful capability to determine the masses of supermassive black holes by resolving gas kinematics on small angular scales in galaxy nuclei.
We present $sim0.10^{primeprime}-$resolution Atacama Large Millimeter/submillimeter Array (ALMA) CO(2$-$1) imaging of the arcsecond-scale ($r approx 150$ pc) dusty molecular disk in the giant elliptical galaxy NGC 3258. The data provide unprecedented
We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolu
We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 5 and Cycle 6 observations of CO(2$-$1) and CO(3$-$2) emission at 0.2$-$0.3 resolution in two radio-bright, brightest group/cluster early-type galaxies, NGC 315 and NGC 4261. The da
We present a supermassive black hole (SMBH) mass measurement in the Seyfert 1 galaxy NGC7469 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the atomic-${rm [CI]}$(1-0) and molecular-$^{12}$CO(1-0) emission lines at the spat
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy