ﻻ يوجد ملخص باللغة العربية
We determine the mass of the black hole at the center of the spiral galaxy NGC 4258 by constructing axisymmetric dynamical models of the galaxy. These models are constrained by high spatial resolution imaging and long-slit spectroscopy of the nuclear region obtained with the {em Hubble Space Telescope}, complemented by ground-based observations extending to larger radii. Our best mass estimate is $MBH = (3.3 pm 0.2) times 10^7 MSun $ for a distance of 7.28 Mpc (statistical errors only). This is within 15% of $ (3.82pm 0.01) times 10^7 MSun$, the mass determined from the kinematics of water masers (rescaled to the same distance) assuming they are in Keplerian rotation in a warped disk. The construction of accurate dynamical models of NGC 4258 is somewhat compromised by an unresolved active nucleus and color gradients, the latter caused by variations in the stellar population and/or obscuring dust. These problems are not present in the $sim 30$ other black hole mass determinations from stellar dynamics that have been published by us and other groups; thus, the relatively close agreement between the stellar dynamical mass and the maser mass in NGC 4258 enhances our confidence in the black hole masses determined in other galaxies from stellar dynamics using similar methods and data of comparable quality.
NGC 4258 is the galaxy with the most accurate (maser-based) determination for the mass of the supermassive black hole (SMBH) in its nucleus. In this work we present a two-dimensional mapping of the stellar kinematics in the inner 3.0 x 3.0 arcsec = 1
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy
We present high angular resolution (0.3 or 37 pc) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the CO(2-1) line emission from a central disc in the early-type galaxy NGC 524. This disc is shown to be dynamically relaxed, exhib
We present a stellar dynamical estimate of the black hole (BH) mass in the Seyfert 1 galaxy, NGC 4151. We analyze ground-based spectroscopy as well as imaging data from the ground and space, and we construct 3-integral axisymmetric models in order to
We determine the mass of the nuclear black hole ($M$) in NGC 3706, an early type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxys major axis at larger radii. We fi