ﻻ يوجد ملخص باللغة العربية
With the rapid development of location-based social networks (LBSNs), spatial item recommendation has become an important means to help people discover attractive and interesting venues and events, especially when users travel out of town. However, this recommendation is very challenging compared to the traditional recommender systems. A user can visit only a limited number of spatial items, leading to a very sparse user-item matrix. Most of the items visited by a user are located within a short distance from where he/she lives, which makes it hard to recommend items when the user travels to a far away place. Moreover, user interests and behavior patterns may vary dramatically across different geographical regions. In light of this, we propose Geo-SAGE, a geographical sparse additive generative model for spatial item recommendation in this paper. Geo-SAGE considers both user personal interests and the preference of the crowd in the target region, by exploiting both the co-occurrence pattern of spatial items and the content of spatial items. To further alleviate the data sparsity issue, Geo-SAGE exploits the geographical correlation by smoothing the crowds preferences over a well-designed spatial index structure called spatial pyramid. We conduct extensive experiments to evaluate the performance of our Geo-SAGE model on two real large-scale datasets. The experimental results clearly demonstrate our Geo-SAGE model outperforms the state-of-the-art in the two tasks of both out-of-town and home-town recommendations.
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could at
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses
Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items,
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict