ﻻ يوجد ملخص باللغة العربية
Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T
In recent years, there are great interests as well as challenges in applying reinforcement learning (RL) to recommendation systems (RS). In this paper, we summarize three key practical challenges of large-scale RL-based recommender systems: massive s
With the rapid development of location-based social networks (LBSNs), spatial item recommendation has become an important means to help people discover attractive and interesting venues and events, especially when users travel out of town. However, t
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses
Recently, deep neural networks are widely applied in recommender systems for their effectiveness in capturing/modeling users preferences. Especially, the attention mechanism in deep learning enables recommender systems to incorporate various features