ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model of Two Tales: Dual Transfer Learning Framework for Improved Long-tail Item Recommendation

64   0   0.0 ( 0 )
 نشر من قبل Yin Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.

قيم البحث

اقرأ أيضاً

Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
82 - Kai Wang , Zhene Zou , Qilin Deng 2021
In recent years, there are great interests as well as challenges in applying reinforcement learning (RL) to recommendation systems (RS). In this paper, we summarize three key practical challenges of large-scale RL-based recommender systems: massive s tate and action spaces, high-variance environment, and the unspecific reward setting in recommendation. All these problems remain largely unexplored in the existing literature and make the application of RL challenging. We develop a model-based reinforcement learning framework, called GoalRec. Inspired by the ideas of world model (model-based), value function estimation (model-free), and goal-based RL, a novel disentangled universal value function designed for item recommendation is proposed. It can generalize to various goals that the recommender may have, and disentangle the stochastic environmental dynamics and high-variance reward signals accordingly. As a part of the value function, free from the sparse and high-variance reward signals, a high-capacity reward-independent world model is trained to simulate complex environmental dynamics under a certain goal. Based on the predicted environmental dynamics, the disentangled universal value function is related to the users future trajectory instead of a monolithic state and a scalar reward. We demonstrate the superiority of GoalRec over previous approaches in terms of the above three practical challenges in a series of simulations and a real application.
With the rapid development of location-based social networks (LBSNs), spatial item recommendation has become an important means to help people discover attractive and interesting venues and events, especially when users travel out of town. However, t his recommendation is very challenging compared to the traditional recommender systems. A user can visit only a limited number of spatial items, leading to a very sparse user-item matrix. Most of the items visited by a user are located within a short distance from where he/she lives, which makes it hard to recommend items when the user travels to a far away place. Moreover, user interests and behavior patterns may vary dramatically across different geographical regions. In light of this, we propose Geo-SAGE, a geographical sparse additive generative model for spatial item recommendation in this paper. Geo-SAGE considers both user personal interests and the preference of the crowd in the target region, by exploiting both the co-occurrence pattern of spatial items and the content of spatial items. To further alleviate the data sparsity issue, Geo-SAGE exploits the geographical correlation by smoothing the crowds preferences over a well-designed spatial index structure called spatial pyramid. We conduct extensive experiments to evaluate the performance of our Geo-SAGE model on two real large-scale datasets. The experimental results clearly demonstrate our Geo-SAGE model outperforms the state-of-the-art in the two tasks of both out-of-town and home-town recommendations.
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses sion consistency and sequential dependency over items within the session, repeated item consumption, and session timeliness. In this paper, we propose simple-yet-effective linear models for considering the holistic aspects of the sessions. The comprehensive nature of our models helps improve the quality of session-based recommendation. More importantly, it provides a generalized framework for reflecting different perspectives of session data. Furthermore, since our models can be solved by closed-form solutions, they are highly scalable. Experimental results demonstrate that the proposed linear models show competitive or state-of-the-art performance in various metrics on several real-world datasets.
Recently, deep neural networks are widely applied in recommender systems for their effectiveness in capturing/modeling users preferences. Especially, the attention mechanism in deep learning enables recommender systems to incorporate various features in an adaptive way. Specifically, as for the next item recommendation task, we have the following three observations: 1) users sequential behavior records aggregate at time positions (time-aggregation), 2) users have personalized taste that is related to the time-aggregation phenomenon (personalized time-aggregation), and 3) users short-term interests play an important role in the next item prediction/recommendation. In this paper, we propose a new Time-aware Long- and Short-term Attention Network (TLSAN) to address those observations mentioned above. Specifically, TLSAN consists of two main components. Firstly, TLSAN models personalized time-aggregation and learn user-specific temporal taste via trainable personalized time position embeddings with category-aware correlations in long-term behaviors. Secondly, long- and short-term feature-wise attention layers are proposed to effectively capture users long- and short-term preferences for accurate recommendation. Especially, the attention mechanism enables TLSAN to utilize users preferences in an adaptive way, and its usage in long- and short-term layers enhances TLSANs ability of dealing with sparse interaction data. Extensive experiments are conducted on Amazon datasets from different fields (also with different size), and the results show that TLSAN outperforms state-of-the-art baselines in both capturing users preferences and performing time-sensitive next-item recommendation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا