ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum entropy of systems described by non-Hermitian Hamiltonians

243   0   0.0 ( 0 )
 نشر من قبل Konstantin Zloshchastiev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.



قيم البحث

اقرأ أيضاً

We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these definitions seem to be physically consistent while becoming equivalent only in certain cases. Moreover, when autocorrelation functions are considered, one can introduce another function defined as the relative difference between the two definitions. We conjecture that such a function can be used to assess the positive semi-definiteness of the density operator without computing its eigenvalues. We illustrate these points by studying analytically a number of models with two energy levels.
The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been p aid to non-Hermitian systems. In this Letter, working with different logarithmic operators, we derive two previously unknown expressions for quantum Fisher information, and two Cramer-Rao bounds lower than the well-known one are found for non-Hermitian systems. These lower bounds are due to the merit of non-Hermitian observable and it can be understood as a result of extended regimes of optimization. Two experimentally feasible examples are presented to illustrate the theory, saturation of these bounds and estimation precisions beyond the Heisenberg limit are predicted and discussed. A setup to measure non-Hermitian observable is also proposed.
We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems. The considered time scaling involves no extra-couplings and yields a significant enhancement of the quantum fidelity for a comparable amo unt of resources. We discuss the application of this technique to quantum state transfers in 2 and 3-level open quantum systems. We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian. Interestingly, we show that, with an appropriate driving, the time-scaling technique preserves the optimality of the quantum speed with respect to the quantum speed limit while reducing significantly the damping of the quantum state norm.
154 - Ingrid Rotter 2017
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open quantum systems by means of a projection operator formalism elaborated many years ago, and applied by now to the description of different open quantum systems. The Hamiltonian describing the open quantum system is non-Hermitian. Most studied are the eigenvalues of the non-Hermitian Hamiltonian of many-particle systems embedded in one environment. We point to the unsolved problems of this method when applied to the description of realistic many-body systems. We then underline the role played by the eigenfunctions of the non-Hermitian Hamiltonian. Very interesting results originate from the fluctuations of the eigenfunctions in systems with gain and loss of excitons. They occur with an efficiency of nearly 100%. An example is the photosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا