ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Hermitian Quantum Physics of Open Systems

155   0   0.0 ( 0 )
 نشر من قبل Ingrid Rotter
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ingrid Rotter




اسأل ChatGPT حول البحث

Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open quantum systems by means of a projection operator formalism elaborated many years ago, and applied by now to the description of different open quantum systems. The Hamiltonian describing the open quantum system is non-Hermitian. Most studied are the eigenvalues of the non-Hermitian Hamiltonian of many-particle systems embedded in one environment. We point to the unsolved problems of this method when applied to the description of realistic many-body systems. We then underline the role played by the eigenfunctions of the non-Hermitian Hamiltonian. Very interesting results originate from the fluctuations of the eigenfunctions in systems with gain and loss of excitons. They occur with an efficiency of nearly 100%. An example is the photosynthesis.



قيم البحث

اقرأ أيضاً

112 - John E. Gough 2019
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with car e and may not even exist in some cases. Here we layout the quantum probabilistic formulation in terms of von Neumann algebras, and outline conditions (non-demolition properties) under which filtering may occur.
210 - Ingrid Rotter 2007
In the Feshbach projection operator (FPO) formalism the whole function space is divided into two subspaces. One of them contains the wave functions localized in a certain finite region while the continuum of extended scattering wave functions is invo lved in the other subspace. The Hamilton operator of the whole system is Hermitian, that of the localized part is, however, non-Hermitian. This non-Hermitian Hamilton operator $H_{rm eff}$ represents the core of the FPO method in present-day studies. It gives a unified description of discrete and resonance states. Furthermore, it contains the time operator. The eigenvalues $z_lambda$ and eigenfunctions $phi_lambda$ of $H_{rm eff}$ are an important ingredient of the $S$ matrix. They are energy dependent. The phases of the $phi_lambda$ are, generally, nonrigid. Most interesting physical effects are caused by the branch points in the complex plane. On the one hand, they cause the avoided level crossings that appear as level repulsion or widths bifurcation in approaching the branch points under different conditions. On the other hand, observable values are usually enhanced and accelerated in the vicinity of the branch points. In most cases, the theory is time asymmetric. An exception are the ${cal PT}$ symmetric bound states in the continuum appearing in space symmetric systems due to the avoided level crossing phenomenon in the complex plane. In the paper, the peculiarities of the FPO method are considered and three typical phenomena are sketched: (i) the unified description of decay and scattering processes, (ii) the appearance of bound states in the continuum and (iii) the spectroscopic reordering processes characteristic of the regime with overlapping resonances.
We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bo unded generator, our analysis leads to a refinement of existing results and extends them to a larger class of quantum operations. We also prove the existence of a novel strong quantum Zeno limit for quantum operations for which a certain spectral gap assumption, which all previous results relied on, is lifted. The quantum operations are instead required to satisfy a weaker property of strong power-convergence. In addition, we establish, for the first time, the existence of a quantum Zeno limit for the case of unbounded generators. We also provide a variety of physically interesting examples of quantum operations to which our results apply.
149 - Ingrid Rotter 2018
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$ contain the influence of exceptional points (EPs) as well as that of external mixing (EM) of the states via the environment. As a result, equilibrium states exist (far from EPs). They are different from those of the corresponding closed system. Their wavefunctions are orthogonal although the Hamiltonian is non-Hermitian.
231 - C. Yuce 2021
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonline ar effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا