ترغب بنشر مسار تعليمي؟ اضغط هنا

Cramer-Rao bound and quantum parameter estimation with non-Hermitian systems

83   0   0.0 ( 0 )
 نشر من قبل Xuexi Yi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been paid to non-Hermitian systems. In this Letter, working with different logarithmic operators, we derive two previously unknown expressions for quantum Fisher information, and two Cramer-Rao bounds lower than the well-known one are found for non-Hermitian systems. These lower bounds are due to the merit of non-Hermitian observable and it can be understood as a result of extended regimes of optimization. Two experimentally feasible examples are presented to illustrate the theory, saturation of these bounds and estimation precisions beyond the Heisenberg limit are predicted and discussed. A setup to measure non-Hermitian observable is also proposed.

قيم البحث

اقرأ أيضاً

159 - Olivier Pinel 2010
Multimode Gaussian quantum light, including multimode squeezed and/or multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications to quantum information processing and metrology involving conti nuous variables. In this paper, we determine the ultimate sensitivity in the estimation of any parameter when the information about this parameter is encoded in such Gaussian light, irrespective of the exact information extraction protocol used in the estimation. We then show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity is to put the most squeezed state available in a well-defined light mode. This implies that it is not possible to take advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement between different modes. We show that an appropriate homodyne detection scheme allows us to reach this Cramr-Rao bound. We apply finally these considerations to the problem of optimal phase estimation using interferometric techniques.
In collisional thermometry, a system in contact with the thermal bath is probed by a stream of ancillas. Coherences and collective measurements were shown to improve the Fisher information in some parameter regimes, for a stream of independent and id entically prepared (i.i.d.) ancillas in some specific states [Seah et al., Phys. Rev. Lett., 180602 (2019)]. Here we refine the analysis of this metrological advantage by optimising over the possible input ancilla states, also for block-i.i.d.~states of block size b=2. For both an indirect measurement interaction and a coherent energy exchange channel, we show when the thermal Cramer-Rao bound can be beaten, and when a collective measurement of $N>1$ ancilla may return advantages over single-copy measurements.
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these definitions seem to be physically consistent while becoming equivalent only in certain cases. Moreover, when autocorrelation functions are considered, one can introduce another function defined as the relative difference between the two definitions. We conjecture that such a function can be used to assess the positive semi-definiteness of the density operator without computing its eigenvalues. We illustrate these points by studying analytically a number of models with two energy levels.
In this letter, we show that for all the so-called path-symmetric states, the measurement of parity of photon number at the output of an optical interferometer achieves maximal phase sensitivity at the quantum Cramer-Rao bound. Such optimal phase sen sitivity with parity is attained at a suitable bias phase, which can be determined a priori. Our scheme is applicable for local phase estimation.
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one need s both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا