ﻻ يوجد ملخص باللغة العربية
The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been paid to non-Hermitian systems. In this Letter, working with different logarithmic operators, we derive two previously unknown expressions for quantum Fisher information, and two Cramer-Rao bounds lower than the well-known one are found for non-Hermitian systems. These lower bounds are due to the merit of non-Hermitian observable and it can be understood as a result of extended regimes of optimization. Two experimentally feasible examples are presented to illustrate the theory, saturation of these bounds and estimation precisions beyond the Heisenberg limit are predicted and discussed. A setup to measure non-Hermitian observable is also proposed.
Multimode Gaussian quantum light, including multimode squeezed and/or multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications to quantum information processing and metrology involving conti
In collisional thermometry, a system in contact with the thermal bath is probed by a stream of ancillas. Coherences and collective measurements were shown to improve the Fisher information in some parameter regimes, for a stream of independent and id
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these
In this letter, we show that for all the so-called path-symmetric states, the measurement of parity of photon number at the output of an optical interferometer achieves maximal phase sensitivity at the quantum Cramer-Rao bound. Such optimal phase sen
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one need