ﻻ يوجد ملخص باللغة العربية
We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems. The considered time scaling involves no extra-couplings and yields a significant enhancement of the quantum fidelity for a comparable amount of resources. We discuss the application of this technique to quantum state transfers in 2 and 3-level open quantum systems. We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian. Interestingly, we show that, with an appropriate driving, the time-scaling technique preserves the optimality of the quantum speed with respect to the quantum speed limit while reducing significantly the damping of the quantum state norm.
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the
In this work we address systems described by time-dependent non-Hermitian Hamiltonians under time-dependent Dyson maps. We shown that when starting from a given time-dependent non-Hermitian Hamiltonian which is not itself an observable, an infinite c
We investigate if physical laws can impose limit on computational time and speed of a quantum computer built from elementary particles. We show that the product of the speed and the running time of a quantum computer is limited by the type of fundame
We investigate the roles of the relativistic effect on the speed of evolution of a quantum system coupled with amplitude damping channels. We find that the relativistic effect speed-up the quantum evolution to a uniform evolution speed of open quantu
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one need