ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Sparsification of Random-Walk Matrix Polynomials

164   0   0.0 ( 0 )
 نشر من قبل Yu Cheng
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of random-walk matrix-polynomial $$L_alpha(G)=D-sum_{r=1}^dalpha_rD(D^{-1}A)^r$$ where $A$ is the adjacency matrix of a weighted, undirected graph, $D$ is the diagonal matrix of weighted degrees, and $alpha=(alpha_1...alpha_d)$ are nonnegative coefficients with $sum_{r=1}^dalpha_r=1$. Recall that $D^{-1}A$ is the transition matrix of random walks on the graph. The sparsification of $L_alpha(G)$ appears to be algorithmically challenging as the matrix power $(D^{-1}A)^r$ is defined by all paths of length $r$, whose precise calculation would be prohibitively expensive. In this paper, we develop the first nearly linear time algorithm for this sparsification problem: For any $G$ with $n$ vertices and $m$ edges, $d$ coefficients $alpha$, and $epsilon > 0$, our algorithm runs in time $O(d^2mlog^2n/epsilon^{2})$ to construct a Laplacian matrix $tilde{L}=D-tilde{A}$ with $O(nlog n/epsilon^{2})$ non-zeros such that $tilde{L}approx_{epsilon}L_alpha(G)$. Matrix polynomials arise in mathematical analysis of matrix functions as well as numerical solutions of matrix equations. Our work is particularly motivated by the algorithmic problems for speeding up the classic Newtons method in applications such as computing the inverse square-root of the precision matrix of a Gaussian random field, as well as computing the $q$th-root transition (for $qgeq1$) in a time-reversible Markov model. The key algorithmic step for both applications is the construction of a spectral sparsifier of a constant degree random-walk matrix-polynomials introduced by Newtons method. Our algorithm can also be used to build efficient data structures for effective resistances for multi-step time-reversible Markov models, and we anticipate that it could be useful for other tasks in network analysis.



قيم البحث

اقرأ أيضاً

We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a $1/e$ approximation factor of the objective. Our main technical contribution is an extension of Gurvitss lower bound on the coefficient of the square-free monomial of a degree $m$-homogeneous stable polynomial on $m$ variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
We introduce and study finite $d$-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define $ell_1$-volumes and show that they contain Euclidean volumes and hypertree volumes . We show that they can approximate any $d$-volume with $O(n^d)$ multiplicative distortion. On the other hand, contrary to Bourgains theorem for $d=1$, there exists a $2$-volume that on $n$ vertices that cannot be approximated by any $ell_1$-volume with distortion smaller than $tilde{Omega}(n^{1/5})$. We further address the problem of $ell_1$-dimension reduction in the context of $ell_1$ volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any $ell_1$ metric on $n$ points can be $(1+ epsilon)$-approximated by a sum of $O(n/epsilon^2)$ cut metrics, improving over the best previously known bound of $O(n log n)$ due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.
124 - Noga Alon , Sepehr Assadi 2020
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allow s for proper coloring of $G$ from the sampled colors. Besides being a combinatorial statement of its own independent interest, this theorem was shown to have various applications to design of algorithms for $(Delta+1)$ coloring in different models of computation on massive graphs such as streaming or sublinear-time algorithms. In this paper, we further study palette sparsification problems: * We prove that for $(1+varepsilon) Delta$ coloring, sampling only $O_{varepsilon}(sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper coloring from the sampled colors. * A natural family of graphs with chromatic number much smaller than $(Delta+1)$ are triangle-free graphs which are $O(frac{Delta}{ln{Delta}})$ colorable. We prove that sampling $O(Delta^{gamma} + sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper $O_{gamma}(frac{Delta}{ln{Delta}})$ coloring of triangle-free graphs. * We show that sampling $O_{varepsilon}(log{n})$ colors per vertex is sufficient for proper coloring of any graph with high probability whenever each vertex is sampling from a list of $(1+varepsilon) cdot deg(v)$ arbitrary colors, or even only $deg(v)+1$ colors when the lists are the sets ${1,ldots,deg(v)+1}$. Similar to previous work, our new palette sparsification results naturally lead to a host of new and/or improved algorithms for vertex coloring in different models including streaming and sublinear-time algorithms.
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph $G$ on $n$ vertices described by a binary string of length $N$, an integer $kleq log n$, and an erro r parameter $epsilon > 0$, our algorithm runs in space $tilde{O}(klog (Ncdot w_{mathrm{max}}/w_{mathrm{min}}))$ where $w_{mathrm{max}}$ and $w_{mathrm{min}}$ are the maximum and minimum edge weights in $G$, and produces a weighted graph $H$ with $tilde{O}(n^{1+2/k}/epsilon^2)$ edges that spectrally approximates $G$, in the sense of Spielmen and Teng [ST04], up to an error of $epsilon$. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastavas effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by $k$ above, and the resulting sparsity that can be achieved.
192 - Michael Ben-Or , Lior Eldar 2015
Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of Phase Estimation algorithms performs when we apply it to solve the Eigen-Problem of Hermitian ma trices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in $O(log^2 n)$ parallel time with a total cost of $O(n^{omega+1})$ Boolean operations. This Boolean complexity matches the best known rigorous $O(log^2 n)$ parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases $(mod (2pi))$ is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in $O(log^2 n)$ parallel time and $O(n^omega)$ Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا