ﻻ يوجد ملخص باللغة العربية
We introduce and study finite $d$-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define $ell_1$-volumes and show that they contain Euclidean volumes and hypertree volumes. We show that they can approximate any $d$-volume with $O(n^d)$ multiplicative distortion. On the other hand, contrary to Bourgains theorem for $d=1$, there exists a $2$-volume that on $n$ vertices that cannot be approximated by any $ell_1$-volume with distortion smaller than $tilde{Omega}(n^{1/5})$. We further address the problem of $ell_1$-dimension reduction in the context of $ell_1$ volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any $ell_1$ metric on $n$ points can be $(1+ epsilon)$-approximated by a sum of $O(n/epsilon^2)$ cut metrics, improving over the best previously known bound of $O(n log n)$ due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.
We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of random-walk matrix-polynomial $$L_alpha(G)=D-sum_{r=1}^dalpha_rD(D^{-1}A)^r$$ where $A$ is the adjacency matrix of a weighted, undirected graph,
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allow
A tantalizing conjecture in discrete mathematics is the one of Komlos, suggesting that for any vectors $mathbf{a}_1,ldots,mathbf{a}_n in B_2^m$ there exist signs $x_1, dots, x_n in { -1,1}$ so that $|sum_{i=1}^n x_imathbf{a}_i|_infty le O(1)$. It is
Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I +P, where I is th
Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of termin