ﻻ يوجد ملخص باللغة العربية
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allows for proper coloring of $G$ from the sampled colors. Besides being a combinatorial statement of its own independent interest, this theorem was shown to have various applications to design of algorithms for $(Delta+1)$ coloring in different models of computation on massive graphs such as streaming or sublinear-time algorithms. In this paper, we further study palette sparsification problems: * We prove that for $(1+varepsilon) Delta$ coloring, sampling only $O_{varepsilon}(sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper coloring from the sampled colors. * A natural family of graphs with chromatic number much smaller than $(Delta+1)$ are triangle-free graphs which are $O(frac{Delta}{ln{Delta}})$ colorable. We prove that sampling $O(Delta^{gamma} + sqrt{log{n}})$ colors per vertex is sufficient and necessary to obtain a proper $O_{gamma}(frac{Delta}{ln{Delta}})$ coloring of triangle-free graphs. * We show that sampling $O_{varepsilon}(log{n})$ colors per vertex is sufficient for proper coloring of any graph with high probability whenever each vertex is sampling from a list of $(1+varepsilon) cdot deg(v)$ arbitrary colors, or even only $deg(v)+1$ colors when the lists are the sets ${1,ldots,deg(v)+1}$. Similar to previous work, our new palette sparsification results naturally lead to a host of new and/or improved algorithms for vertex coloring in different models including streaming and sublinear-time algorithms.
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection,
Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of termin
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, B
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-col
We introduce and study finite $d$-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define $ell_1$-volumes and show that they contain Euclidean volumes and hypertree volumes