ﻻ يوجد ملخص باللغة العربية
Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the momentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature - a bump - can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivations.
Synchrotron radiation observed from runaway electrons (REs) in tokamaks depends upon the position and size of the RE beam, the RE energy and pitch distributions, as well as the location of the observer. We show that experimental synchrotron images of
Experimental results on the position and current control of disruption generated runaway electrons (RE) in FTU are presented. A scanning interferometer diagnostic has been used to analyze the time evolution of the RE beam radial position and its inst
Charged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultr
Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the syn
Plasmas in Earths outer magnetosphere, magnetosheath, and solar wind are essentially collisionless. This means particle distributions are not typically in thermodynamic equilibrium and deviate significantly from Maxwellian distributions. The deviatio