ﻻ يوجد ملخص باللغة العربية
Experimental results on the position and current control of disruption generated runaway electrons (RE) in FTU are presented. A scanning interferometer diagnostic has been used to analyze the time evolution of the RE beam radial position and its instabilities. Correspondence of the interferometer time traces, radial profile reconstructed via magnetic measurements and fission chamber signals are discussed. New RE control algorithms, which define in real-time updated plasma current and position references, have been tested in two experimental scenarios featuring disruption generated RE plateaus. Comparative studies among 52 discharges with disruption generated RE beam plateaus are presented in order to assess the effectiveness of the proposed control strategies as the RE beam interaction with the plasma facing components is reduced while the current is ramped-down.
Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the syn
Synchrotron radiation observed from runaway electrons (REs) in tokamaks depends upon the position and size of the RE beam, the RE energy and pitch distributions, as well as the location of the observer. We show that experimental synchrotron images of
Mitigation of runaway electrons is one of the outstanding issues for the reliable operation of ITER and other large tokamaks, and accurate estimates for the expected runaway-electron energies and current are needed. Previously, linearized tools (whic
Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the m
The formation of a substantial post-disruption runaway electron current in ASDEX Upgrade material injection experiments is determined by avalanche multiplication of a small seed population of runaway electrons. For the investigation of these scenario