ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Maxwellianity of electron distributions near Earths magnetopause

78   0   0.0 ( 0 )
 نشر من قبل Daniel Graham
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmas in Earths outer magnetosphere, magnetosheath, and solar wind are essentially collisionless. This means particle distributions are not typically in thermodynamic equilibrium and deviate significantly from Maxwellian distributions. The deviations of these distributions can be further enhanced by plasma processes, such as shocks, turbulence, and magnetic reconnection. Such distributions can be unstable to a wide variety of kinetic plasma instabilities, which in turn modify the electron distributions. In this paper the deviations of the observed electron distributions from a bi-Maxwellian distribution function is calculated and quantified using data from the Magnetospheric Multiscale (MMS) spacecraft. A statistical study from tens of millions of electron distributions shows that the primary source of the observed non-Maxwellianity are electron distributions consisting of distinct hot and cold components in Earths low-density magnetosphere. This results in large non-Maxwellianities in at low densities. However, after performing a stastical study we find regions where large non-Maxwellianities are observed for a given density. Highly non-Maxwellian distributions are routinely found are Earths bowshock, in Earths outer magnetosphere, and in the electron diffusion regions of magnetic reconnection. Enhanced non-Maxwellianities are observed in the turbulent magnetosheath, but are intermittent and are not correlated with local processes. The causes of enhanced non-Maxwellianities are investigated.



قيم البحث

اقرأ أيضاً

For various plasma applications the so-called (non-relativistic) $kappa$-distribution is widely used to reproduce and interpret the suprathermal particle populations exhibiting a power-law distribution in velocity or energy. Despite its reputation th e standard $kappa$-distribution as a concept is still disputable, mainly due to the velocity moments $M_{l}$ which make possible a macroscopic characterization, but whose existence is restricted only to low orders $l < 2kappa-1$. In fact, the definition of the $kappa$-distribution itself is conditioned by the existence of the moment of order $l=2$ (i.e., kinetic temperature) satisfied only for $kappa > 3/2$. In order to resolve these critical limitations we introduce the regularized $kappa$-distribution with non-diverging moments. For the evaluation of all velocity moments a general analytical expression is provided enabling a significant step towards a macroscopic (fluid-like) description of space plasmas, and, in general, any system of $kappa$-distributed particles.
Waves around the lower hybrid frequency are frequently observed at Earths magnetopause, and readily reach very large amplitudes. Determining the properties of lower hybrid waves is crucial because they are thought to contribute to electron and ion he ating, cross-field particle diffusion, anomalous resistivity, and energy transfer between electrons and ions. All these processes could play an important role in magnetic reconnection at the magnetopause and the evolution of the boundary layer. In this paper, the properties of lower hybrid waves at Earths magnetopause are investigated using the Magnetospheric Multiscale (MMS) mission. For the first time, the properties of the waves are investigated using fields and direct particle measurements. The highest-resolution electron moments resolve the velocity and density fluctuations of lower hybrid waves, confirming that electrons remain approximately frozen in at lower hybrid wave frequencies. Using fields and particle moments the dispersion relation is constructed and the wave-normal angle is estimated to be close to $90^{circ}$ to the background magnetic field. The waves are shown to have a finite parallel wave vector, suggesting that they can interact with parallel propagating electrons. The observed wave properties are shown to agree with theoretical predictions, the previously used single-spacecraft method, and four-spacecraft timing analyses. These results show that single-spacecraft methods can accurately determine lower hybrid wave properties.
86 - T. Toncian , C. Wang , E. McCary 2015
The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities p lasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the GHOST laser system at UT Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying Direct Laser Acceleration (DLA) as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, maxwellian spectra observed in earlier experiments. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution functions in plasmas, i.e., entropy-based measures of the departure of a local distribution function from an associated Maxwellian distribution function with the s ame density, bulk flow, and temperature as the local distribution. First, we consider a form previously employed by Kaufmann and Paterson [{it J.~Geophys.~Res.,} {bf 114}, A00D04 (2009)], assessing its properties and deriving equivalent forms. To provide a quantitative understanding of it, we derive analytical expressions for three common non-Maxwellian plasma distribution functions. We show that there are undesirable features of this non-Maxwellianity measure including that it can diverge in various physical limits and elucidate the reason for the divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure based on the velocity-space kinetic entropy density, which has a meaningful physical interpretation and does not diverge. We use collisionless particle-in-cell simulations of two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are linked to kinetic processes occurring during magnetic reconnection. We also show the simulated non-Maxwellianity agrees reasonably well with predictions for distributions resembling those calculated analytically. These results can be important for applications, as non-Maxwellianity can be used to identify regions of kinetic-scale physics or increased dissipation in plasmas.
72 - S. S. Cerri 2018
We consider the one-dimensional equilibrium problem of a shear-flow boundary layer within an extended Hall-MHD (eHMHD) model of plasma that retains first-order finite Larmor radius (FLR) corrections to the ion dynamics. We provide a generalized versi on of the analytic expressions for the equilibrium configuration given in Cerri et al. (2013) [Cerri et al., Phys. Plasmas 20, 112112 (2013)], highlighting their intrinsic asymmetry due to the relative orientation of the magnetic field $mathbf{b}=mathbf{B}/|mathbf{B}|$ and the fluid vorticity $mathbf{omega}=mathbf{ abla}timesmathbf{u}$ ($mathbf{omega b}$ asymmetry). Finally, we show that FLR effects can modify the Chapman--Ferraro current layer at the flank magnetopause in a way that is consistent with the observed structure reported by Haaland et al. (2014) [Haaland et al., J. Geophys. Res. Space Phys. 119, 9019-9037 (2014)]. In particular, we are able to qualitatively reproduce the following key features: (i) the dusk-dawn asymmetry of the current layer, (ii) a double-peak feature in the current profiles, and (iii) adjacent current sheets having thicknesses of several ion Larmor radii and with different current directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا