ﻻ يوجد ملخص باللغة العربية
Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting the electron acceleration. The effect of the ALD-force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker-Planck codes LUKE [Decker & Peysson, Report EUR-CEA-FC-1736, Euratom-CEA, (2004)] and CODE [Landreman et al, Comp. Phys. Comm. 185, 847 (2014)]. Under the action of the ALD force, we find that a bump is formed in the tail of the electron distribution function if the electric field is sufficiently large. We also observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could in turn pump energy from runaway electrons and alter their confinement.
Mitigation of runaway electrons is one of the outstanding issues for the reliable operation of ITER and other large tokamaks, and accurate estimates for the expected runaway-electron energies and current are needed. Previously, linearized tools (whic
Using the Vlasov-wave formalism, it is shown that self-consistency vanishes in the plateau regime of the bump-on-tail instability if the plateau is broad enough. This shows that, in contrast with the turbulent trapping Ansatz, a renormalization of th
Experimental results on the position and current control of disruption generated runaway electrons (RE) in FTU are presented. A scanning interferometer diagnostic has been used to analyze the time evolution of the RE beam radial position and its inst
Synchrotron radiation observed from runaway electrons (REs) in tokamaks depends upon the position and size of the RE beam, the RE energy and pitch distributions, as well as the location of the observer. We show that experimental synchrotron images of
This paper investigates the effect of the ITER-like wall (ILW) on runaway electron (RE) generation through a comparative study of similar slow argon injection JET disruptions, performed with different wall materials. In the carbon wall case, a runawa