ﻻ يوجد ملخص باللغة العربية
Charge fluctuations in nano-circuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which co-exist with the regular Casimir/van der Waals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Our results strongly indicate that fluctuations induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the micro- and nanoscale.
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-li
We discuss fluctuation-induced forces in a system described by a continuous Landau-Ginzburg model with a quenched disorder field, defined in a $d$-dimensional slab geometry $mathbb R^{d-1}times[0,L]$. A series representation for the quenched free ene
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjecte
Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, tur
The Casimir interaction between two objects, or between an object and a plane, depends on their relative orientations. We make these angular dependences explicit by considering prolate or oblate spheroids. The variation with orientation is calculated