ﻻ يوجد ملخص باللغة العربية
Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with $AA^{prime}$ and $AB$ structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS$_2$, which are already of high interest for their use in FETs.
We examine the intrinsic energy dissipation steps in electrically biased graphene channels. By combining in-situ measurements of the spontaneous optical emission with a Raman spectroscopy study of the graphene sample under conditions of current flow,
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp
We report on a theoretical study of the influence of electron-electron interactions on ARPES spectra in graphene that is based on the random-phase-approximation and on graphenes massless Dirac equation continuum model. We find that level repulsion be
The effect of electron-phonon interactions in the conductance through metallic atomic wires is theoretically analyzed. The proposed model allows to consider an atomic size region electrically and mechanically coupled to bulk electrodes. We show that
The efficiency of optical emitters can be dramatically enhanced by reducing the effective mode volume (the Purcell effect). Here we predict an analogous enhancement for electron-phonon (el-ph) scattering, achieved by compressing the electronic Wannie