ترغب بنشر مسار تعليمي؟ اضغط هنا

Casimir manipulations: The orientation dependence of fluctuation-induced forces

118   0   0.0 ( 0 )
 نشر من قبل Thorsten Emig
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Casimir interaction between two objects, or between an object and a plane, depends on their relative orientations. We make these angular dependences explicit by considering prolate or oblate spheroids. The variation with orientation is calculated exactly at asymptotically large distances for the electromagnetic field, and at arbitrary separations for a scalar field. For a spheroid in front of a mirror, the leading term is orientation independent, and we find the optimal orientation from computations at higher order.



قيم البحث

اقرأ أيضاً

In stationary nonequilibrium states a coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir forces or pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a velocity gradient. Specifically, we have obtained explicit expressions for the magnitude of the shear-induced pressure enhancement in a liquid layer between two horizontal plates that complete and correct results previously presented in the literature. In contrast to nonequiibrium Casimir pressures induced by a temperature gradient, kinetic theory shows that nonequilibrium contributions from short-range fluctuations are no longer negligible. In addition, it is noted that computer simulations of model fluids in shear observe effects from molecular correlations at nanoscales that have a different physical origin. The idea that such computer simulations probe shear-induced pressures resulting from coupling of long-wavelength hydrodynamic modes is erroneous.
In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature g radient through the Soret effect. A comparison is made between the pressures induced by nonequilibrium concentration fluctuations in liquid mixtures and those induced by nonequilibrium temperature fluctuations in one-component fluids. Some suggestions for experimental verification procedures are also presented.
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjecte d to a temperature or concentration gradient. One is a coupling between the heat or mass-diffusion mode with a viscous mode in fluids subjected to a temperature or concentration gradient. Another one is the spatial inhomogeneity of thermal noise in the presence of a gradient. We show that in fluids fluctuation-induced forces arising from mode coupling are several orders of magnitude larger than those from inhomogeneous noise.
We investigate the effect of quenched surface disorder on effective interactions between two planar surfaces immersed in fluids which are near criticality and belong to the Ising bulk universality class. We consider the case that, in the absence of r andom surface fields, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We find analytically that in the linear weak-coupling regime, i.e., upon including the mean-field contribution and Gaussian fluctuations, the presence of random surface fields with zero mean leads to an attractive, disorder-induced contribution to the critical Casimir interactions between the two confining surfaces. Our analytical, field-theoretic results are compared with corresponding Monte Carlo simulation data.
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move d through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا