ﻻ يوجد ملخص باللغة العربية
The Casimir interaction between two objects, or between an object and a plane, depends on their relative orientations. We make these angular dependences explicit by considering prolate or oblate spheroids. The variation with orientation is calculated exactly at asymptotically large distances for the electromagnetic field, and at arbitrary separations for a scalar field. For a spheroid in front of a mirror, the leading term is orientation independent, and we find the optimal orientation from computations at higher order.
In stationary nonequilibrium states a coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir forces or pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a
In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature g
Long-range thermal fluctuations appear in fluids in nonequilibrium states leading to fluctuation-induced Casimir-like forces. Two distinct mechanisms have been identified for the origin of the long-range nonequilibrium fluctuations in fluids subjecte
We investigate the effect of quenched surface disorder on effective interactions between two planar surfaces immersed in fluids which are near criticality and belong to the Ising bulk universality class. We consider the case that, in the absence of r
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move